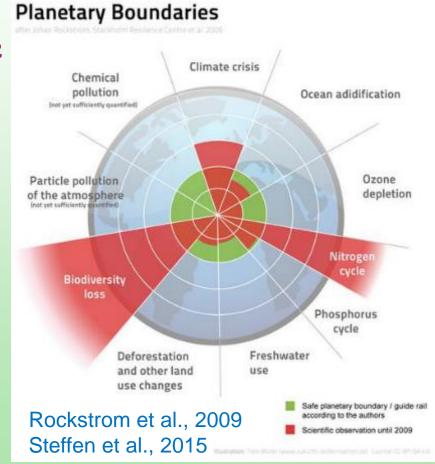


Journées AFPF (21 - 22 mars 2016 – Paris)

Les légumineuses fourragères et prairiales :

quoi de neuf?

Ce que les légumineuses fourragères et prairiales apportent à l'environnement


Pierre Cellier¹, Jean-François Odoux², Pascal Thiébeau³, Françoise Vertès⁴

- 1: INRA, UMR ECOSYS, Thiverval-Grignon
- 2 : INRA, UE Entomologie, Surgères
- 3: INRA, UMR FARE, Reims
- 4: INRA, UMR SAS, Quimper

Légumineuses et environnement : des effets multiformes qui touchent à des enjeux majeurs autour de deux problématiques

- Azote et fixation symbiotique cycle N, bilan d'énergie, ☐ GES
- Biodiversité et diversification biodiversité sol, plantes, faune ...
- à différentes échelles

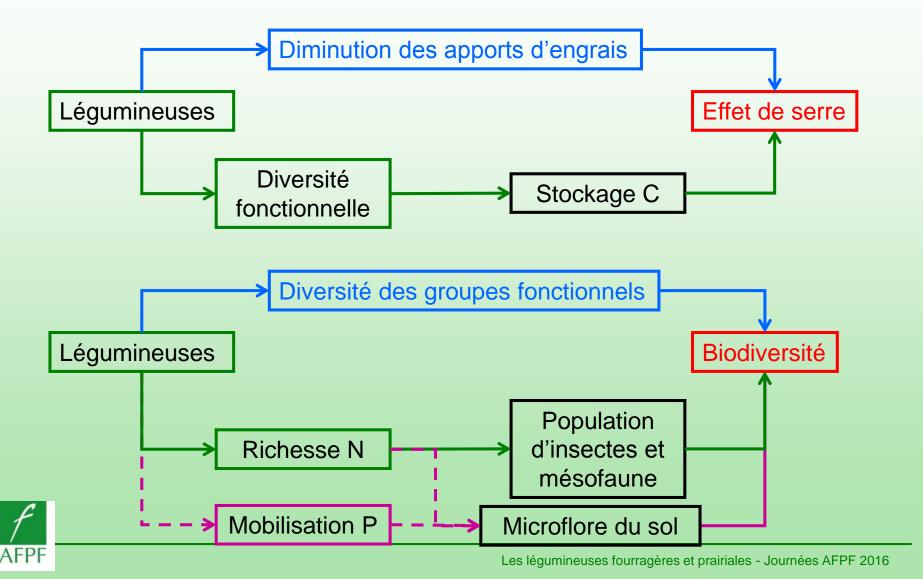
(de la parcelle à l'échelle globale)

Les légumineuses, une composante incontournable des écosystèmes prairiaux

Très présentes dans les prairies sous différentes formes

- Prairies permanentes
- Association avec des graminées fourragères : RG-TB,
- · Monospécifique: luzernes, éventuellement aménagées

Une composante importante de l'équilibre des rations et de l'autonomie protéique des exploitations


→ conséquence sur le bilan C et N des exploitations

Un rôle essentiel pour la productivité, la pérennité et la biodiversité des prairies, en particulier celles à faibles niveaux d'intrants

... mais une contribution spécifique souvent difficile à cerner et maîtriser

Les légumineuses, des effets multiples, directs et indirects

Légumineuses et azote dans les prairies vus sous l'angle des fuites vers l'environnement

Mais ...

N fixé est libéré dans les déjections animales et suite au retournement des prairies

 N_2 , N_2O , NO_x NH₃ **Exportations** par produits **Exportations** animaux par récoltes Volatilisation **Dénitrification Fixation** Protéo synthèse **ENGRAIS** Déjections Résidus Absorption SOL N organique Minéralisation N minéral Matière organique $NH_4^+ \rightarrow NO_2^- \rightarrow NO_3^- \rightarrow N_2O \rightarrow N_2$ Biomasse microbienne Organisation **Nitrification** Lixiviation FAU

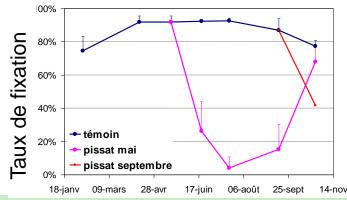
Moins
d'apports
d'engrais
de
synthèse

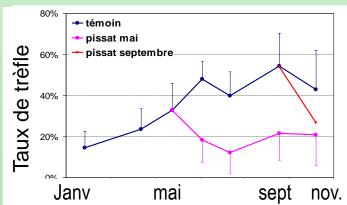
Des apports progressifs d'azote par la fixation symbiotique

Adaptation de la fixation au contenu en N du sol

→ Quelles conséquences sur les pertes d'azote vers les eaux et l'air et sur le stockage de carbone ?

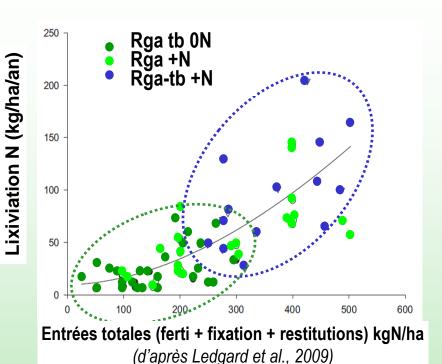
Légumineuses et qualité de l'eau et de l'air

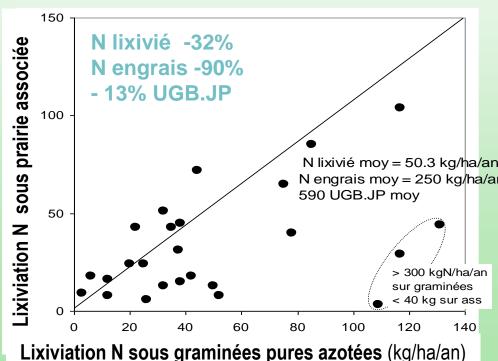

La présence de légumineuses en prairies modifie t'elle le risque de lixiviation ?


Des facteurs de risques :

- De l'herbe riche en N → augmentation des rejets N
- Des résidus végétaux riches en N et une rhizodéposition importante

3 mécanismes de régulation :


- le taux de fixation (court terme),
- l'absorption N de la graminée associée
- le taux de légumineuse trèfle (court et moyen terme)
- → régulation interannuelle par l'azote du sol (Schwinning & Parsons, 1996)
 → « oscillations » du % trèfle blanc selon N sol (cycles de 3-5 ans)


Légumineuses et qualité de l'eau sous prairies

Peu de lixiviation sous luzernières ou prairies fauchées

La quantité d'N lixivié dépend avant tout de la charge en N de la prairie (fertilisation + fixation + déjections)

à même charge N : -10% environ sous association (régulations)

Qualité de l'air : Émissions d'ammoniac depuis les résidus de culture

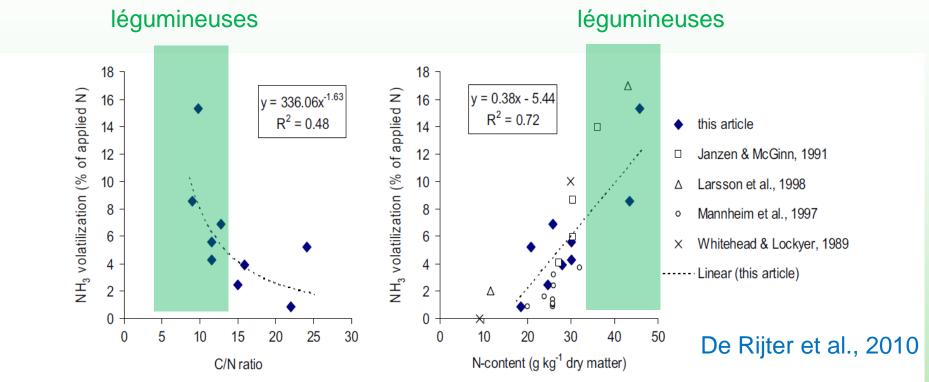
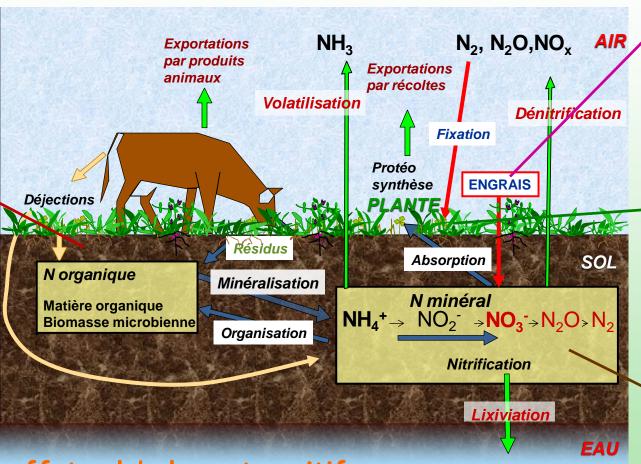


Fig. 4. Relation between cumulative ammonia emission after 37 days (expressed as percentage of the applied N) and C/N-ratio (left) or N content (right). N content of this article is organic N only.

- → Moindres émissions liées à des fertilisations azotées limitées
- → Des risques accrus d'émissions depuis les résidus en raison de leurs fortes teneurs en N et leurs faibles rapports C/N
- → Les quantités globales émises restent faibles



Synthèse: Légumineuses et qualité des eaux et de l'air

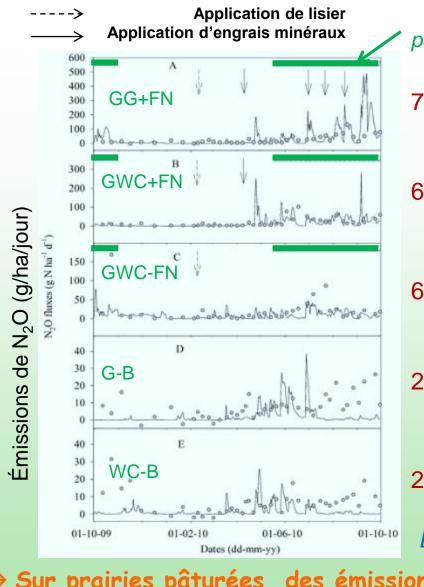
Mais ...

l'azote fixé
devenu
« labile »
(résidus,
déjections)
peut
générer les
mêmes
pertes que
l'N des
fertilisants

AFPF

Des pertes d'azote moindres par rapport aux prairies fertilisées

Meilleure valorisation de l'azote fixé par les associations


Autorégulation de la fixation visà-vis du contenu en N du sol

→ Des effets globalement positifs

Attention à la gestion du pâturage et au retournement des prairies (avec ou sans légumineuses)

Légumineuses et changement climatique

pâturage

7.82±1.67 kg/ha/an

6.35±1.14 kg/ha/an

6.54±1.70 kg/ha/an

2.38±0.12 kg/ha/an

2.45±0.85 kg/ha/an

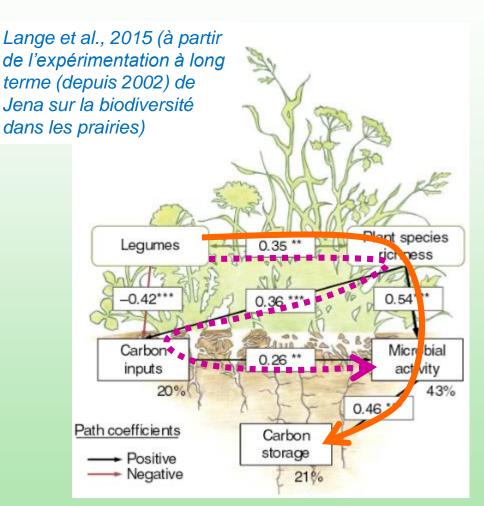
Li et al., 2011

Systèmes pâturés

Ray-grass fertilisé

Ray-grass / Trèfle blanc fertilisé

Ray-grass / Trèfle blanc non fertilisé


Systèmes fauchés

Ray-grass non fertilisé

Ray-grass / Trèfle blanc non fertilisé

- → Sur prairies pâturées, des émissions de N₂O supérieures au niveau de fond (témoin fauché)
- → Des émissions inférieures sur les associations ;
- → Contribution de l'azote fixé (?)
- > Importance des phases de pâturage (déjections, compaction)

Légumineuses prairiales, biodiversité et stockage C

Tilman et al., 2008 : expérimentation « biodiversité-prairie » depuis 1994, Cedar Creek, Minnesota, Etats-Unis

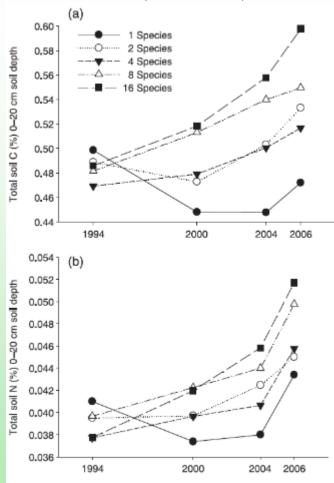


Fig. 1. Dependence of total soil C (%) (a), and total soil N (%) (b), measured between 0 and 20 cm soil-depth on the number of species planted in each plot and across the 12-year grassland biodiversity experiment.

→ Des effets indirects passant par l'effet des légumineuses sur la biodiversité de l'écosystème (plantes supérieures et microflore)

Changement climatique: une convergence d'effets favorables

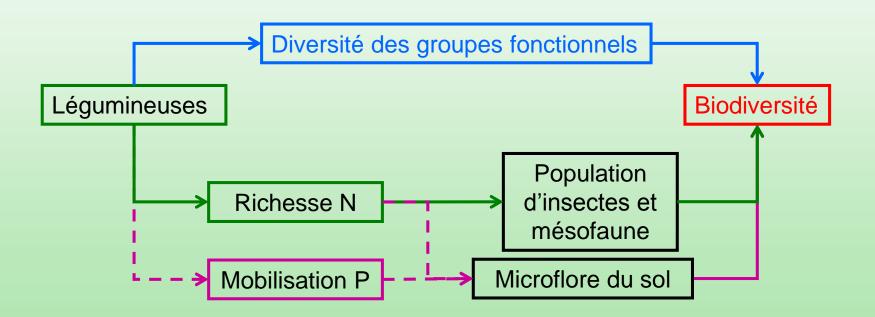
Moins d'émissions

induites par la fabrication et l'épandage d'engrais

- d'engrais sur légumineuses et sur cultures suivantes

Gestion du pâturage et du retournement des prairies et luzernes Effets à court et moyen terme

NH₃ N₂, N₂O,NO, AIR **Exportations** par produits **Exportations** animaux par récoltes Volatilisation Dénitrification **Fixation** Protéc synthèse Déjections Absorption SOL N organique Minéralisation N minéral Matière organique $NH_4^+ \rightarrow NO_2^- \rightarrow NO_3^- \rightarrow N_2O \rightarrow N_2$ Biomasse microbienne Organisation **Nitrification**

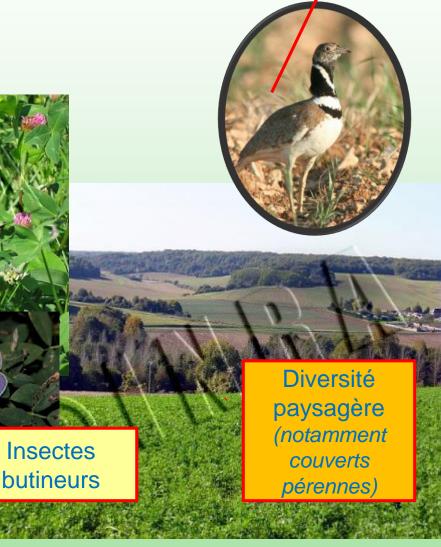

Moindres émissions indirectes et directes de N_2O .

+/-

Moindre apport direct de C mais favorise le stockage C dans les sols par l'écosystème :

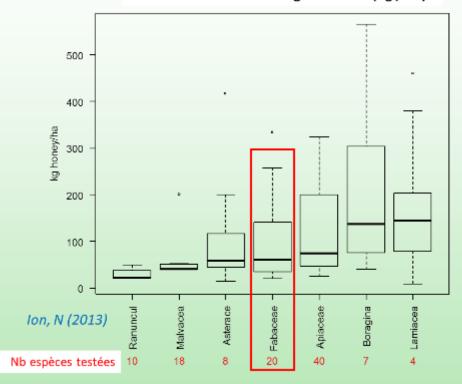
- Apports N
- Systèmes racinaires
- MO + réfractaire

Effets des légumineuses sur la biodiversité



Des effets multiples à différentes échelles

Mammifères et oiseaux : refuge, alimentation


Microflore et mésofaune du sol

Composition floristique de l'écosystème

Légumineuses et pollinisateurs

Potentiel mellifère des légumineuses (Kg / ha)

Sce Ecobee

Deux-Sèvres

Sce Ecobee, 2009-201

2009-2015

Récolte de pollen par les abeilles

Etude des récoltes de pollen par les abeilles domestiques sur 416 échantillons d'avril à septembre, sur la période 2009 à 2015

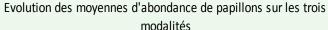
Pollen Légum prairiales

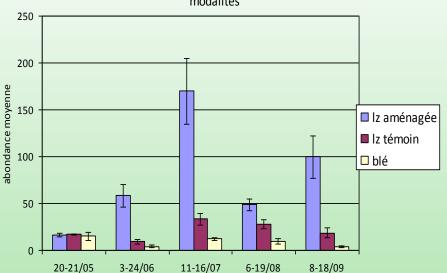
Pollen Légum cultures

- → Un potentiel méllifère moyen
- → Une floraison pouvant arriver quand les ressources sont rares

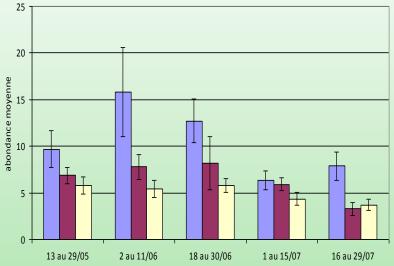
20%

1028


→ Plus une source importante de nectar que de pollen



Un exemple : effets de luzernes aménagées en Champagne-Ardenne


Populations de papillons

Populations d'oiseaux

Evolution de l'abondance moyenne des oiseaux dans les trois modalités

- → Pérennité
- → Calendrier floraison
- → Source de nectar

- → Pérennité (nidification, refuge ...)
- → Source d'alimentation (insectes, plantes)

Convergence d'effets positifs dans différents compartiments (sol, aérien, paysage)

Biodiversité du sol (++):

Biomasse microbienne, Vers de terre et Mésofaune (+ effet pérennité de certaines légumineuses) Favorise indirectement le stockage de C

Biodiversité aérienne (++ à +++)

Biodiversité végétale (rotations, prairies permanentes)

Insectes pollinisateurs : cultures mellifères (féverole, luzerne...) dans les assolements

Refuge pour macrofaune, Aliment de qualité pour méso-macrofaune

Importance des légumineuses pérennes

Résumé - Impacts environnementaux des légumineuses

Populations d'oiseaux et d'insectes (notamment pollinisateurs

Bilan **globalement positif** sur le plan du **changement climatique**

Emissions moindres vers l'atmosphère

FERTILITE SOL

Des effets **positifs**, **multiformes** sur la **biodiversité**

LEGUMINEUSES

Fixation N atm.

Symbiose

NODULATIONS

Cycle de l'azote

Réduction des apports N

Moindres pertes N vers les eaux

Des évaluations à faire sur le long terme

Mais attention à la gestion du système pâturage ou retournement des prairies