

Le changement climatique : incertitudes et opportunités pour les prairies et les systèmes fourragers

Journées AFPF (26 - 27 mars 2013 – Paris)

Contribution de l'élevage bovin aux émissions de gaz à effet de serre et au stockage de carbone selon les systèmes de production

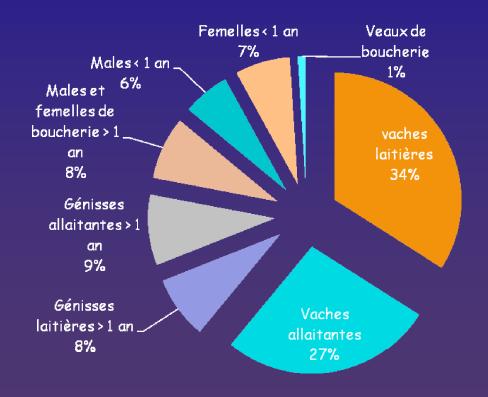
J.B. Dollé, P. Faverdin, J. Agabriel, D. Sauvant

Plan de la présentation

- · Le bilan GES national de l'élevage bovin (approche inventaire)
 - · Les émissions de GES
 - · Le stockage / déstockage de carbone
 - Le bilan national
- L'empreinte carbone des produits de l'élevage bovin (approche ACV)
 - · Le lait
 - · La viande
- · L'évolution des émissions de GES
- · Les leviers d'action
- Conclusion

Introduction

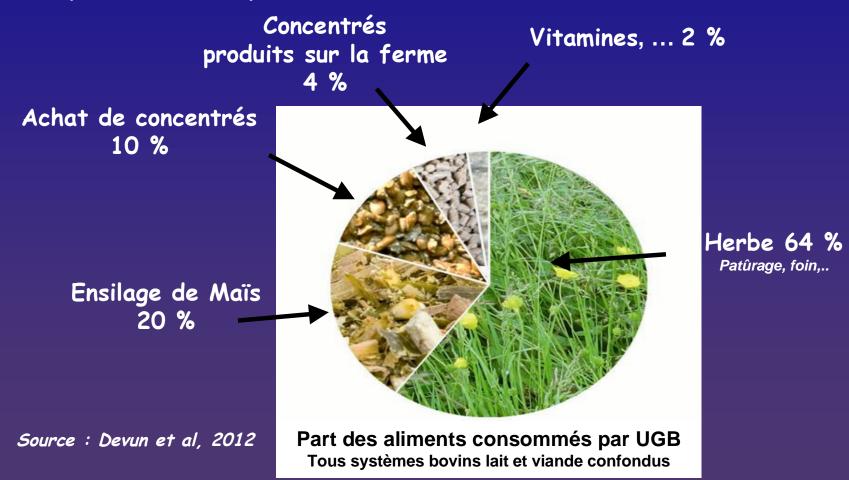
- Une contribution de l'élevage bovin aux émissions de GES de 10 %
- · Des objectifs de réduction des émissions de GES
 - UE: 20 à 30 % d'ici 2020 par rapport à 1990
 - · France: facteur 4 en 2050 / facteur 2 pour l'agriculture
- · Des périmètres d'évaluation différents fonction des objectifs
- Echelle nationale pour les inventaires
- Echelle produit pour les ACV
- La nécessité d'approches globales
- · Echelles système, filière, nationale
- · Intégrant émissions de GES et stockage de carbone


Bilan GES national de l'élevage bovin (approche inventaire)

- · Comptabilisation des émissions directes de GES
 - Basées sur les effectifs animaux et prenant en compte les émissions de méthane entérique (CH₄) et les émissions des déjections (CH₄ et N₂O)
- Comptabilisation du stockage / déstockage de carbone
- Changement d'affectation des sols
- Changement de pratiques

Les émissions de GES

• Le troupeau bovin français : 54.9 millions de tonnes d'équivalent CO_2 eq en 2010



Source : CITEPA, 2012

Le stockage / déstockage de carbone

· Des systèmes de production bovine liés au sol

11 millions d'ha de prairies qui stockent 65-70 t de carbone

Le stockage / déstockage de carbone lié au changement d'affectation des sols

- Trois situations en exploitation d'élevage (Arrouays et al 2002)
 - Implantation de prairies : + 490 kg C/ha/an
 - · Conversion de PP en Prairies temporaires : 0 kg C/ha/an
 - · Retournement de prairies permanentes en cultures :
 - 950 kg C/ha/an

	1988	2010
SAU totale	28 595 799	26 963 254
Prairies Permanentes (PP)	10 214 086	7 634 370
Prairies temporaires (PT)	2 785 969	3 472 867

Surfaces agricoles françaises (ha, RGA 1988-2010).

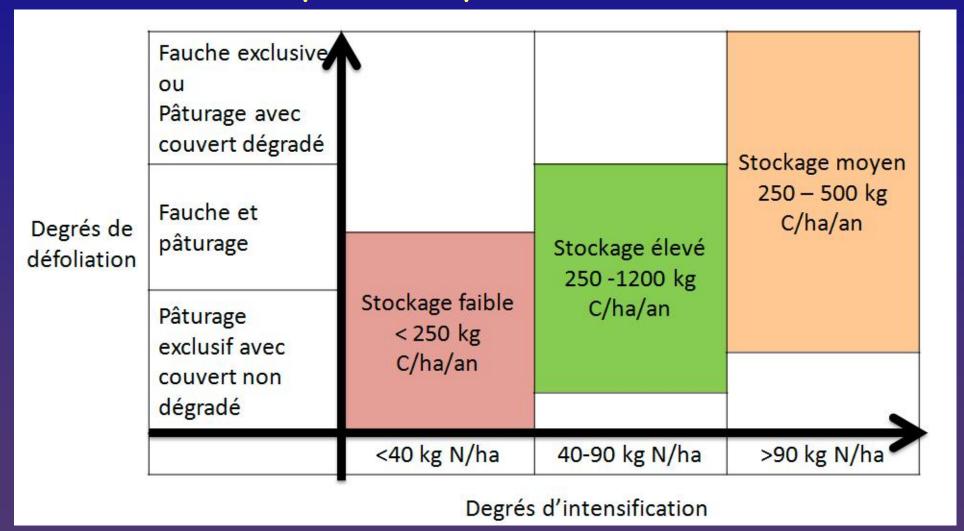
 La situation française entre 1988 et 2010 : une perte de 2,5 M d'ha de PP et une augmentation des PT....

Le stockage / déstockage de carbone lié au changement d'affectation des sols

Evolution des surfaces

· Pertes de carbone

- 0 kg pour le passage des PP en PT
- 1,7 M tonnes C pour le passage des PP en TL réparties sur TL n'entrant pas en rotation avec des PT, soit 155 kg C/ha/an


Le stockage de carbone des prairies permanentes

- · Un équilibre du carbone atteint dans les sols (Watson et al 2002)
- ...Des flux continus de carbone sur des prairies de longues durées (Soussana et al 2007, Smith et al 2007, Klumpp et al 2009)
- · dépendant :
 - Des conditions climatiques
 - Du niveau de fertilisation
 - · Du mode de récolte
 - · De l'intensité de pâturage

•

Le stockage de carbone des prairies permanentes

adapté de ARROUAYS et al., 2002 ; SOUSSANA et al., 2004 ; SOUSSANA et LUSCHER, 2007 ; SOUSSANA et al., 2009 ; KLUMPP et al., 2010 ; MUDGE et al., 2011 ; FARRUGIA et al., 2012

Le bilan GES national *

Emissions GES	ha	kg C/ha/an	tonnes CO ₂ 54 900 000
Stockoog /dóstockoog carbona			15 048 880
Stockage/déstockage carbone			15 048 880
dont Prairies permanentes	6 687 650	600	14 712 830
dont prairies temporaires et cultures en rotation	4 867 540	0	0
dont cultures n'entrant pas dans une rotation avec des prairies temporaires	1 599 580	-155	-909 080
dont concentrés nationaux achetés (céréales et protéagineux)	543 490	-155	-308 880
dont Haies	4 238 150	100	1 554 010
Bilan émissions – stockage/déstockage			39 851 120

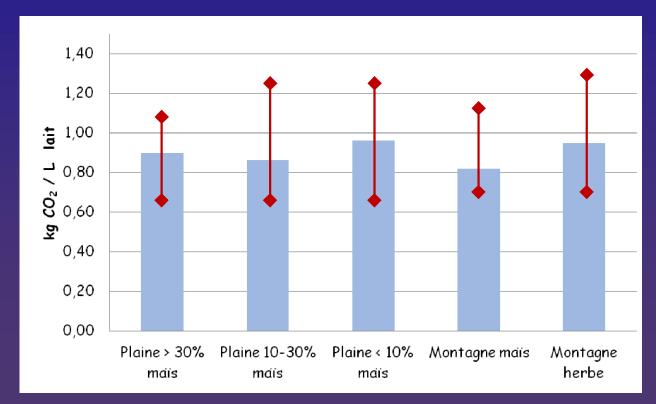

Une compensation carbone de 27 %

^{*}A ce stade, ce bilan émissions/stockage C n'est pas validé par les inventaires

Principes méthodologiques pour le calcul de l'empreinte carbone

- Fidèle à l'approche ACV
 - Emissions directes et indirectes
 - Stockage / déstockage de carbone *
- Périmètre
 - À l'échelle de l'atelier
 - Au portail de l'atelier
- Mode d'allocation lait/viande

Lait : 74 %


Veau : 3 %

Journées AFPF 2013

Une empreinte carbone brute du lait non différenciée entre systèmes de production

 Peu de variabilité inter-systèmes, une forte variabilité intra-système

Des valeurs « conformes » à la bibliographie (# 1 kg CO2/kg lait) :

Basset-Mens, 2007; Vellinga, 2011

Journées AFPF 2013

Une forte variabilité de l'empreinte carbone du lait entre exploitations

		Exploitations de plaine		
	Variables	Optimisés ++	Optimisés	
Structure	Lait standard produit par vache (1)	7 013	6 794	
יויות	% mais/SFP	25	31	
₹.	Chargement (UGB/ha SFP)	1,4	1,8	
nes	Quantité de concentrés (g/l)	154	290	
Pratiques	Bilan azoté (hors fixation, kg N/ha SAU)	33	125	
Enviro nneme	Empreinte carbone brute (kg CO ₂ /l)	0,7	1,0	
	Empreinte carbone nette (kg CO ₂ /l)	0,6	1,0	

Source : évaluation de la base de données des réseaux d'élevage

Une forte variabilité de l'empreinte carbone du lait entre exploitations

		Exploitations de plaine		Exploitations de montagne	
	Variables	Optimisés ++	Optimisés	Optimisés ++	Optimisés
Structure	Lait standard produit par vache (1)	7 013	6 794	5 781	5 870
ruc	% mais/SFP	25	31	1,3	3,3
\$	Chargement (UGB/ha SFP)	1,4	1,8	0,9	1,1
Pratiques	Quantité de concentrés (g/l)	154	290	231	288
	Bilan azoté (hors fixation, kg N/ha SAU)	33	125	15	47
Enviro	Empreinte carbone brute (kg CO ₂ /l)	0,7	1,0	0,9	1,0
	Empreinte carbone nette (kg CO ₂ /l)	0,6	1,0	0,4	0,7

Variabilité liée :

- Au niveau de dépendance aux intrants (concentrés, engrais, énergies,...)
- À la gestion du troupeau (effectifs, gestion sanitaire, « animaux improductifs », bâtiment vs pâturage...)
- Au niveau de productivité (dans la limite des intrants nécessaires et de la pression sur le milieu)

Deux approches distinctes pour les systèmes naisseurs vs engraisseurs

- · Des systèmes naisseurs « extensifs »
 - Animaux au cycle long (moindre production de viande / UGB)
 - Mode de production basé sur la prairie (jusqu'à 50 % de compensation carbone)
 - Moins de stocks, peu d'intrants
- · Des systèmes engraisseurs « intensifs »
 - Mode de production basé sur le stock
 - Plus d'intrants associés à une productivité plus forte et une réduction de la durée de vie des animaux

Kg CO₂/kg vv	Naisseurs	Nais-Engr
Empreinte C brute	15,6	13,8
Empreinte C nette	8,2	10,8

Des investigations complémentaires pour optimiser la démarche d'atténuation des GES ?

· 1/À l'échelle du système de production

	Année	L İait / vache	Concentrés g/l lait	Excédent N kg N/ha	kg CO ₂ brut /l lait	Evolution
Plaine maïs (>30% de	1990	6109	156	163	1,2	
maïs)	2010	7333	113	67	0,9	- 25%
Plaine herbe-maïs (10 à 30% de maïs / SFP)	1990	5900	206	166	1,1	
	2010	7351	206	63	0,9	- 20%
Plaineherbagers(<10%	1990	4914	304	58	1,1	
de mais /SFP)	2010	5500	223	41	1,0	- 15%

- 15 à - 25 % de GES entre 1990 et 2010 En lien avec le gain de productivité et l'amélioration du bilan azoté

Des investigations complémentaires pour optimiser la démarche d'atténuation des GES ?

- · 2/À l'échelle nationale (Puillet et al 2012)
 - La spécialisation et l'intensification des systèmes influent sur les effectifs nationaux et l'équilibre lait et viande et semblent jouer un moindre rôle sur les GES à l'échelle nationale qu'à celle de l'exploitation (Zehetmeier et al. 2012)
 - Au-delà d'une analyse système, il est nécessaire de considérer la complémentarité des cheptels lait et viande et l'atténuation effective des GES

Des perspectives de réduction des émissions de GES

- · Optimisation du carbone en alimentation
 - Part de concentrés dans la ration
 - Digestibilité des fourrages
 - Apport de lipides dans la ration
 - Autres additifs et substances naturelles
- · Optimisation de l'alimentation azotée
 - Bâtiment vs pâturage
 - · Part de légumineuses dans la ration
 - Alimentation azotée équilibrée
 - Type de concentrés
- Optimisation de la fertilisation azotée
 - Réduction des excédents azotés
 - Recours aux légumineuses
 - Inhibiteurs de nitrification
 - Equipements d'épandage

• Journées AFPF 2013

Le rôle de l'élevage dans l'atténuation du changement climatique

- Des approches méthodologiques complémentaires pour déterminer la contribution de l'élevage et construire les plans d'action
- Un secteur garant d'un stock important de carbone dans les sols
- Une réduction importante des émissions de GES durant les 20 dernières années
- Une variabilité forte entre exploitations qui laissent présager des nombreuses pistes de réduction des émissions
- · Des leviers non encore éprouvés

Un secteur à même de poursuivre la réduction de ses émissions de GES d'ici 2050!