

Le changement climatique : incertitudes et opportunités pour les prairies et les systèmes fourragers

Journées AFPF (26 - 27 mars 2013 – Paris)

Adaptation des systèmes d'élevage bovins au changement climatique : intérêts, limites et perspectives des approches de modélisation

A.I. Graux¹, J.C Moreau², H. Raynal³, F. Ruget⁴, P. Carrère¹, P. Faverdin⁵, D. Hill⁶

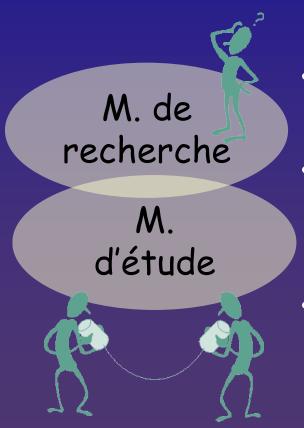
1 : INRA UR EP, 2 : Institut élevage, 3 : INRA UR BIA, 4 : INRA UR Agroclim,

5: INRA UMR PEGASE, 6: LIMOS

Pourquoi la modélisation?

- Formaliser et structurer les connaissances sur le fonctionnement des systèmes étudiés
- Considérer les effets de multiples facteurs seuls ou en interaction & intégrer les boucles de rétroaction connues
- Observer un grand nombre de variables de façon dynamique
- Accéder à des pas de temps longs

En particulier pour étudier ...


- ·les impacts du changement climatique sur les systèmes d'élevage
- ·les conséquences de scénarios d'adaptation sur la production de ces systèmes et l'environnement

Cadre de l'étude

Principales approches de modélisation développées par la Recherche

 Comprendre les mécanismes et les comportements émergents

- Tester des scénarios
- Supports de médiation entre acteurs
- Mobilisables pour instruire les politiques publiques

Deux types d'« expérimentation virtuelle »

Changement Conduite 1 Conduite 2 climatique Modèle Règles Conduite Production Environnement

Exemples de 2 modèles à compartiments, dynamiques, déterministes et mécanistes

 PaSim, M. biogéochimique de simulation du fonctionnement des prairies

https://www1.clermont.inra.fr/urep/modeles/pasim_FR.htm

 STICS, M. générique de simulation des cultures fourragères

http://www7.avignon.inra.fr/agroclim_stics/modele_stics

Implication dans des études de changement climatique

Brisson et Levrault (2010) Graux et al. (2013) Ruget et al. (2012)

Climat • R_g • P • T • e_a • u • [CO₂], [NH₃]

Sol

- · Texture
- · Densité
- Profil hydrique
- Prodondeur
- · MO_{init}

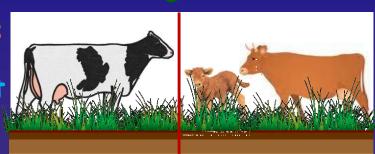
Prairie

- · Pluri or monospécique · avec ou sans
- avec ou sans légumineuses

Herbivores

- · Type (génisses, VA+veaux, VL, moutons)
- · Poids, état, age à la mise à l'herbe
- •PL_{pot,max}, vêlage

Conduite


- Fauche
- Fertilisation N minérale et organique
- ·Pâturage
- Retournement

PaSim

Herbivores

Microclimat Prairie

Sol

Matière, C, N, H₂O

Production

- · Production fourragère
- Teneur C et N des fourrages
- Performances animales (GMQ, PL)

Environnement

- GES (CO₂, N₂O, CH₄)
- · Séquestration C
- Drainage
- · Lixiviation du nitrate
- Échanges NH₃

Conduite automatisée

- · Fauches, pâturage
- · Fertilisation N minérale
- Irrigation
- Complémentation
- · Dimensionnement F/P

ENTRÉES

SYSTÈME AFPE

Culture

Microclimat

PROCESS

SORTIES

Climat

 T_{min} , T_{max} , P, Rg, HR, V et/ou ETP

ITK

Apports N, eau, travail du sol, semis, récolte etc.

Cultures (

Espèces, variétés, sensibilité au stress etc.

Sol

Surf.: arg., pH, N_{org}, Hor.: épais., da, HCC, HPF, cailloux; Init.: N & eau

Croissance foliaire

Interception rayonnement

Croissance biomasse

Elaboration du rendement

Croissance racinaire

Transferts eau / azote

Gestion des interventions techniques

Rendement

Production

Teneur H₂O & N des organes

Environnement

- Drainage
- Lixiviation du nitrate

ITK

- Dates et apports irrigation, fertilisation N
- Dates de fauche etc.

50

Adaptation de l'itinéraire technique

 Modules de gestion de la fertilisation N minérale, d'exploitation de l'herbe (fauche, pâture) et d'irrigation

Seuil de déclenchement de la pratique Ex: INN= 0.5 Seuil d'arrêt de la pratique Ex: INN= 0.5 + ε

Ex: INN
Variable de pilotage

Conditions

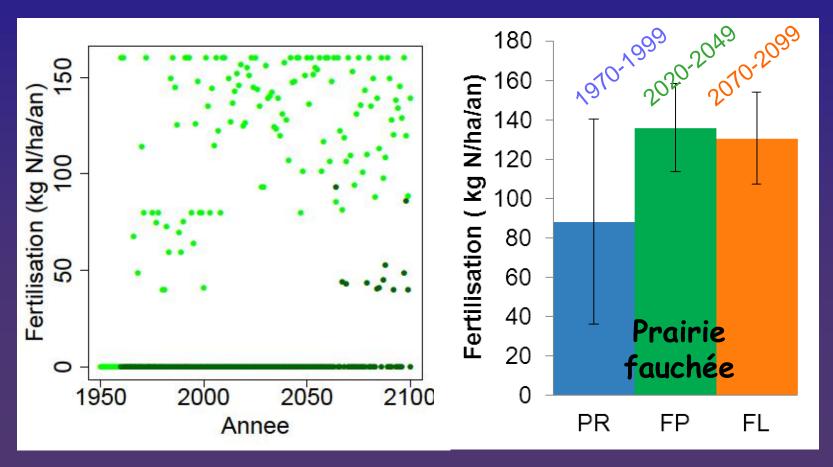
C1: humidité suffisante du sol

C2: le dernier apport a eu il y a au moins 45 j

C3: le nombre d'apports n'excède pas le nombre max d'apports

C4: le 1^{er} apport a lieu à partir de 200°Cj en base 0°C à partir du 01/01

 Q_{min} < Apport pour maximiser la quantité d'N dans le couvert < Q_{max}



2. Modélisation des adaptations aux échelles parcelle et système fourrager

Adaptation de la fertilisation N minérale sous changement climatique

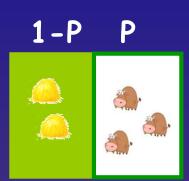
 Cas d'une prairie de moyenne montagne, uniquement fauchée ou pâturée , scénario A2 ARPEGE QQ

Choix de cultures fourragères adaptées

• STICS: Comparaison de variétés de maïs et de graminées, de différentes cultures fourragères (Ruget et al., 2012a; Brisson et Levrault, 2010)

Fétuque Dactyle élevée RGA

Sorgho



- PaSim : Comparaison de plusieurs types fonctionnels de prairies permanentes (Cruz et al. 2010)
- 2. Modélisation des adaptations aux échelles parcelle et système fourrager

Vuichard et al. (2007); Graux, (2011), Graux et al. (2013)

Adaptation du dimensionnement des surfaces en fauche/pâture

- Systèmes exclusivement herbagers
- Utilité du dimensionnement des surfaces en F/P et des reports de stocks comme leviers d'adaptation
- H1: homogénéité de la végétation et du sol des surfaces
 - Pâturées (P)
 - Fauchées (1-P)
 - ⇒Représentées par 2 parcelles de prairie, l'une fauchée, l'autre pâturée
- H2: l'éleveur cherche à maximiser le chargement global de son exploitation (D=PS)
- H3: l'éleveur conçoit son système (dimensionnement F/P,
 D) sur l'expérience qu'il a des « i » dernières années en termes de ressources fourragères

Surfaces fauchées (pilotage fauche et fertilisation N)

(1-P)

1) Estimation du rendement fourrager annuel Y

1950 1960

chargement S

2100

2100

[...]

...] WWWWWWWWWWWWW

2) Calcul de l'espérance du rendement fourrager Y_m

Equilibre : $XP = Y_m(1-P)$

 $P = 1/(1+X/Y_m)$

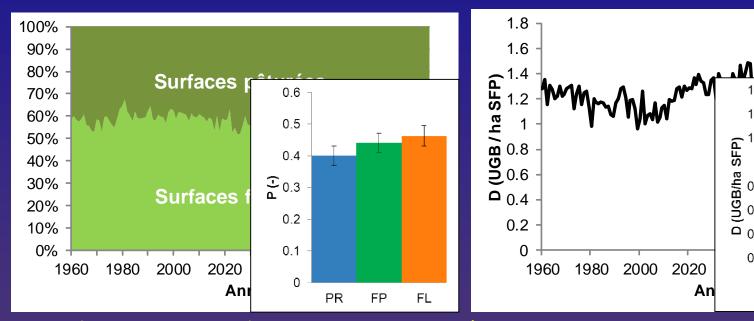
Surfaces pâturées (pilotage pâturage et fertilisation N)

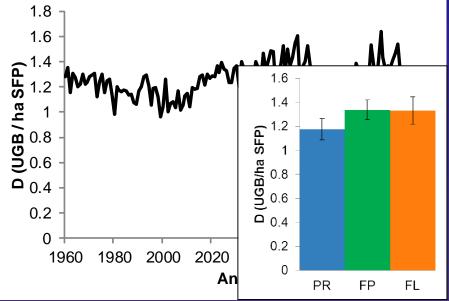
 $= > N_p$ jours pituris et N_e jours à l'étable

Arrêt lorsque $D = P \times S$ atteint un plateau

L'éleveur a optimisé ses surfaces et son chargement système sur l'espérance des ressources

Besoins en fourrages

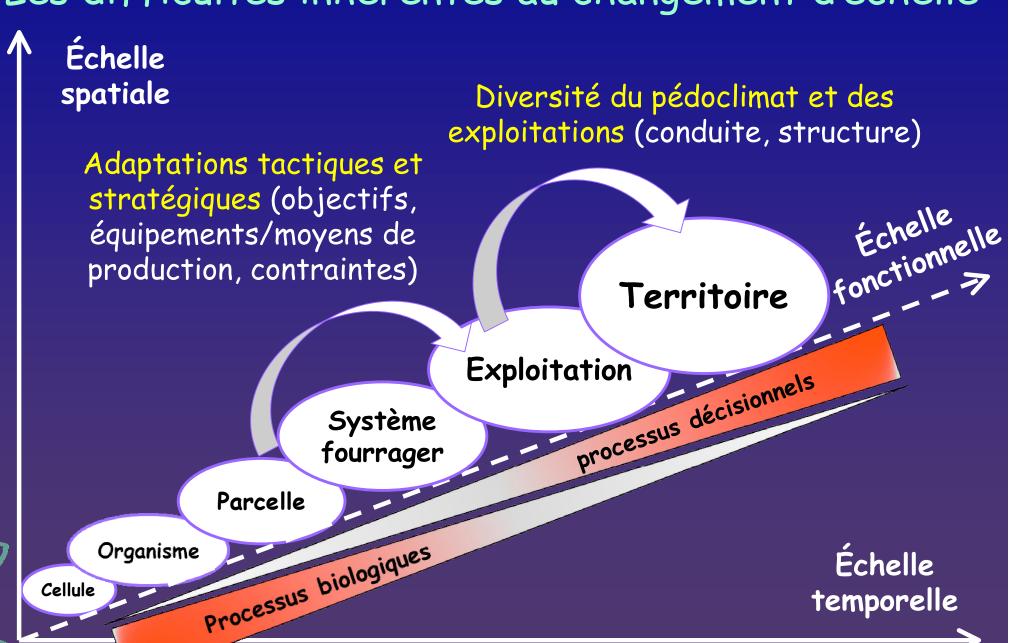

conservés $X = CI \cdot S \cdot N_e$



Système herbager allaitant de moyenne montagne (Auvergne), prairies permanentes

Allocation des surfaces en herbe

Chargement global de l'exploitation



Peu d'évolution de l'équilibre fauche/pâture

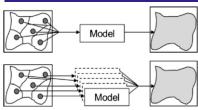
= > L'éleveur pourrait maintenir le chargement global de son exploitation, en 🗷 P (40 => 46%) et en intensifiant l'exploitation des surfaces F (+ 50 kg N/ha, 7 du nombre de coupes) dont la production augmente dans le FP (+1.5 TMS/ha) et de se maintient à ce niveau dans le FL

Les difficultés inhérentes au changement d'échelle

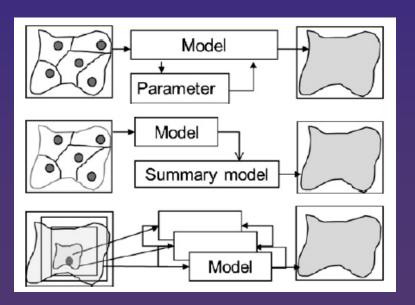
Comment changer d'échelle?

 Manipuler les données d'entrée ou de sortie des modèles

Exploitation Territoire

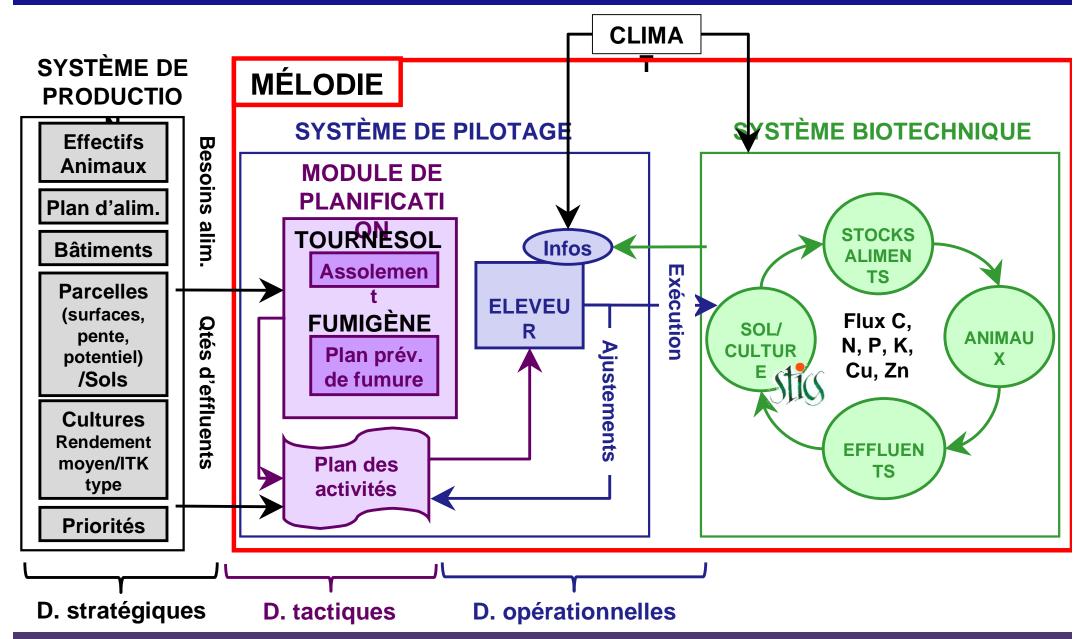

Extrapolation

Singling out
Interpolation
Sampling


Aggregation

Disaggregation

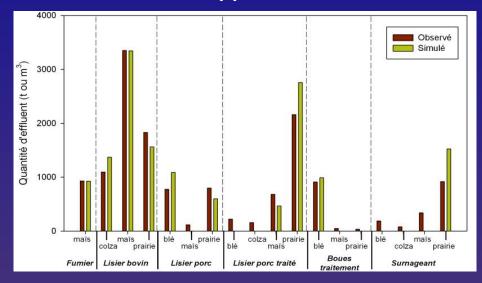
- Manipuler les modèles
 - Paramétrage
 - Simplification
 - Emboitement



La plate-forme de modélisation et de simulation des agro-écosystèmes

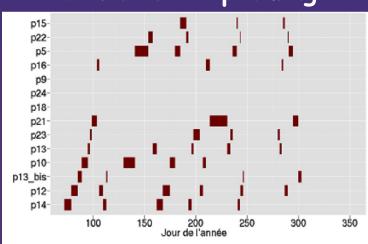
- Créée à l'initiative de l'INRA, opérationnelle depuis 2010
- Mise en commun et réutilisation des modèles développés dans des équipes de recherche de discipline différente
- Facilite le couplage des modèles (formalismes hétérogènes) et le développement de modèles aux échelles fonctionnelles supérieures
- Support d'une 20^{aine} projets de recherche
- Bibliothèque de modèles (STICS, SUNFLO, HERBSIM, MELODIE, TNT, CASIMOD'N etc.)

Une nouvelle génération de modèles intégratifs ...

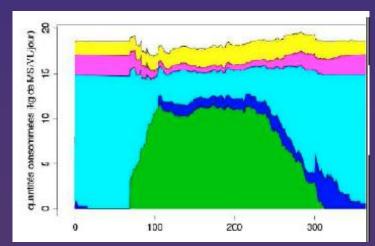


MELODIE : sorties liées au pilotage du système et ses conséquences

Assolement

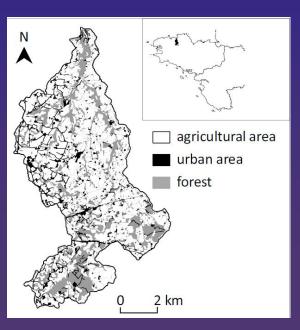


Gestion des effluents



Calendrier de pâturage

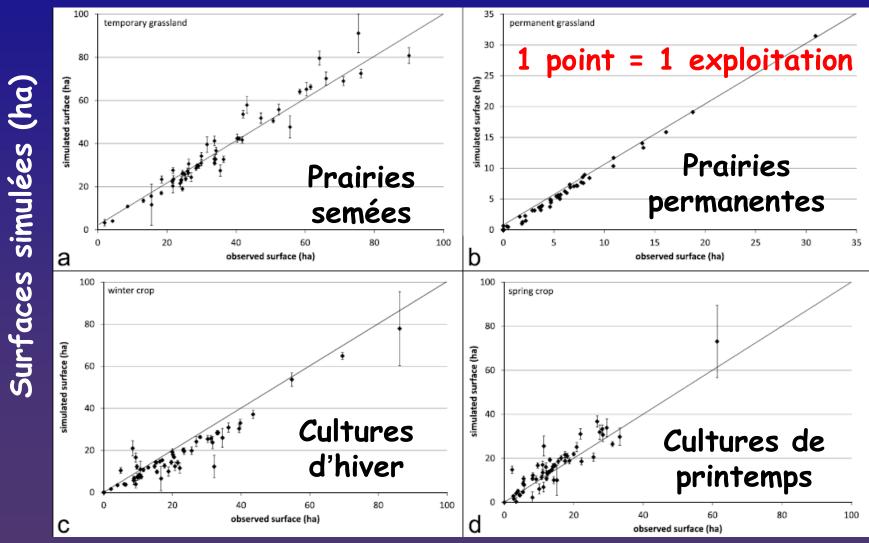
Ration annuelle/lot d'animaux


- Production laitière
- Lixiviation du nitrate
- Emissions NH₃
- Emissions GES Etc.

CASIMOD'N : simulation des transferts N à l'échelle du bassin versant

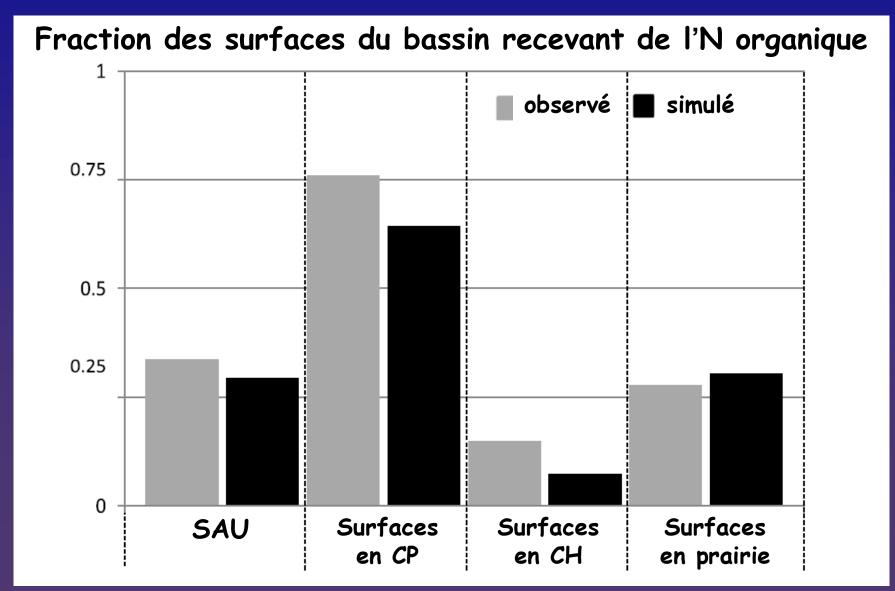
= TOURNESOL + FUMIGENE +TNT2 (modèle agro-hydrologique incluant STICS)

=> Simule l'assolement et de l'apport d'engrais N dans l'espace et dans le temps, en tenant compte de la stratégie de l'éleveur

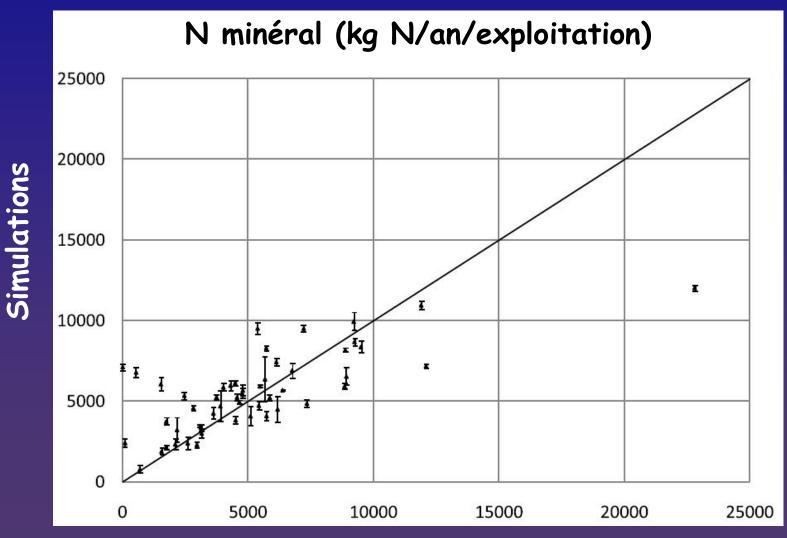


☐ Bassin versant du Yar

- 60 km² (64% SAU, 28% forêts, 8% ZU)
- · 57 EA (54 élevage, 3 polyculture)
- Cultures: prairies, cultures d'hiver (blé, orge, avoine, triticale, colza), cultures de printemps (maïs, pommes de terre, betterave, pois)
- · Simulations de 1996 à 2006


Evaluation de la simulation de l'assolement par CASIMOD'N

Surfaces observées (ha)



Evaluation de la simulation par CASIMOD'N de l'épandage d'effluents organiques par type de surface

Evaluation de la simulation par CASIMOD'N de la fertilisation minérale

Observations

Où en est-on de la modélisation des adaptations au changement climatique?

- Des approches aux échelles parcelle/système fourrager => modéliser l'adaptation des interventions techniques et du dimensionnement des surfaces, comparer l'intérêt de différentes espèces/variétés ...
- Une nouvelle génération de modèles plus intégratifs
 => comparer l'intérêt de différents pilotages par l'éleveur (décisions tactiques et stratégiques)
- Nécessité d'une co-construction et d'une co-évaluation de la pertinence des scénarios d'adaptations avec les porteurs d'enjeux
- · Vers une évaluation multicritère des adaptations?