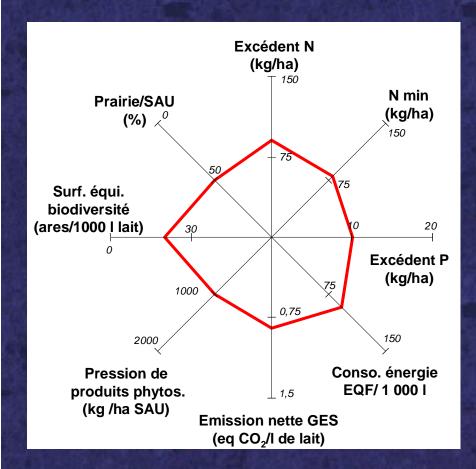


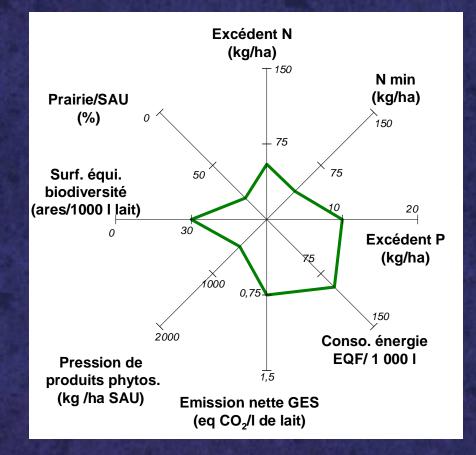
Des fourrages de qualité pour des élevages à hautes performances économiques et environnementales

Journées AFPF 25-26 mars 2009 - Paris

Nouveaux compromis techniques pour concilier les impératifs d'efficacité économique et environnementale des systèmes d'élevage herbivore

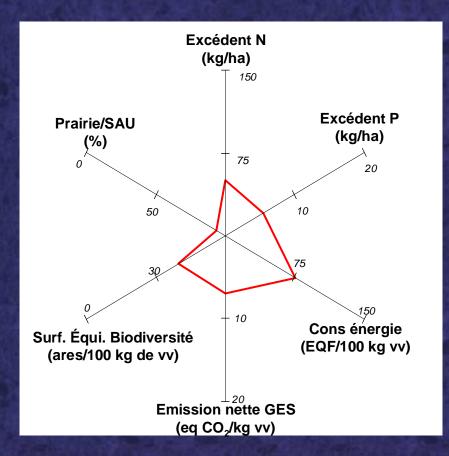
A. Le Gall, E. Beguin, J.B. Dollé, V. Manneville A. Pflimlin

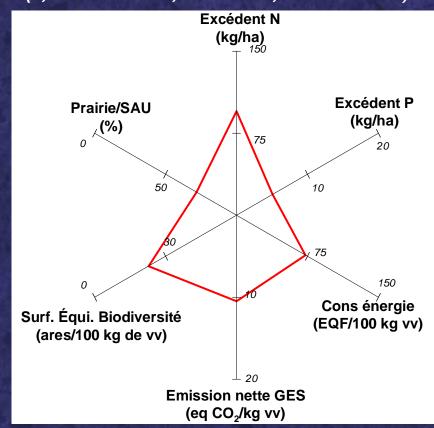

Plan de la présentation


- Performances environnementales des systèmes d'élevage herbivore
- Positionnement des exploitations d'élevage par rapport à la certification "Haute Valeur Environnementale"
- Compatibilité entre performances environnementales et économiques
- Illustrations de solutions techniques pour des élevages à haute valeur économique et environnementale

Empreintes environnementales des systèmes laitiers

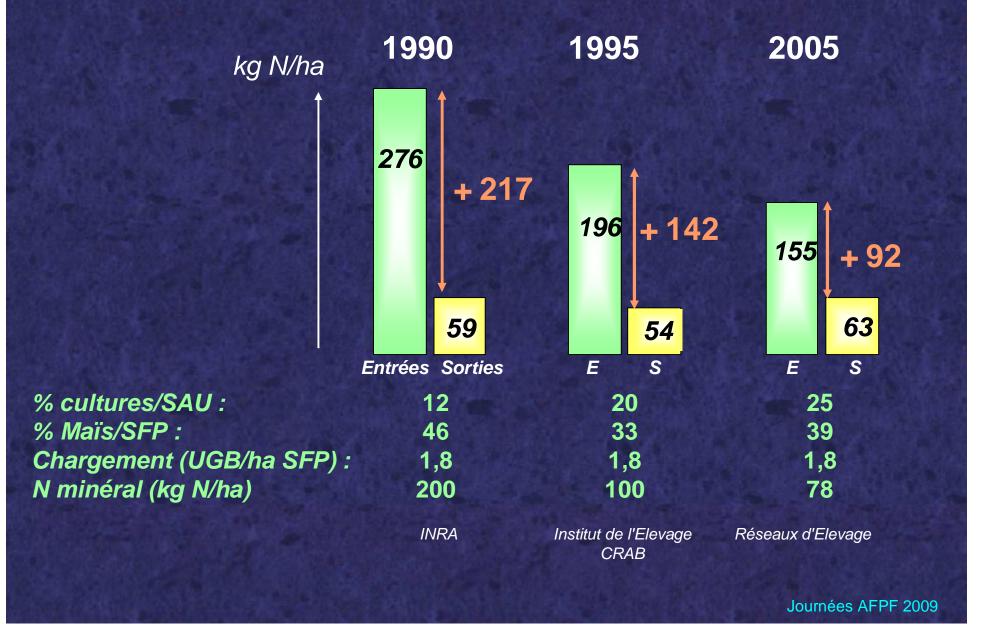
Systèmes de cultures fourragères de l'Ouest (1,6 UGB/ha, 30 % maïs, 25 % cultures)


Systèmes des zones herbagères du Nord Ouest et de l'Est (1,2 UGB/ha, 10-20 % maïs, 10-20 % cultures)



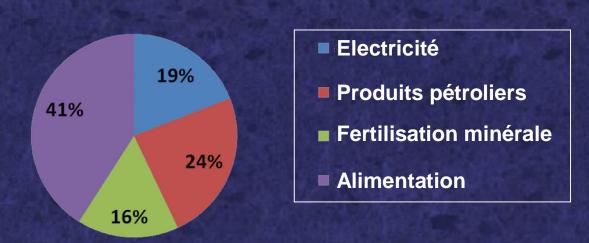
Empreintes environnementales des systèmes viande

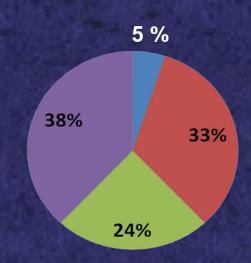
Systèmes naisseurs (1,2 UGB/SFP, 95 % prairies, 5 % cultures)



Systèmes naisseurs-engraisseurs de jeunes bovins (1,6 UGB/ha SFP, 15 % maïs, 10 % cultures)

Faire le bilan écologique complet du système naisseur-engraisseur français et du système naisseur + engraissement en Italie

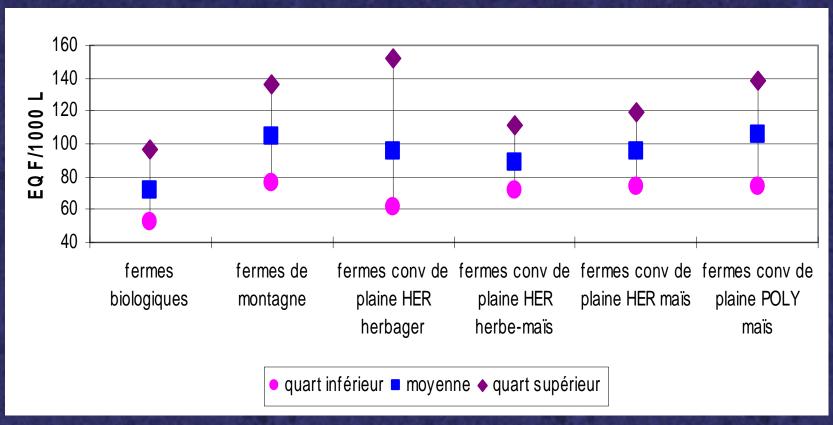

Des excédents d'azote deux fois plus faibles en 15 ans dans les fermes laitières de l'Ouest



Des premiers repères sur les consommations d'énergie dans les systèmes bovins

Répartition des consommations en bovin lait

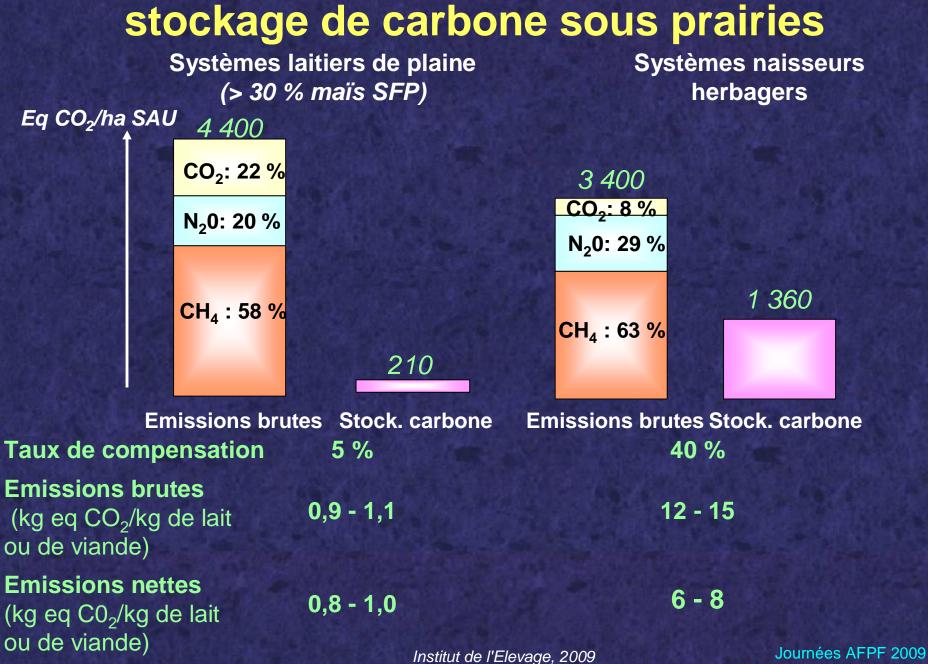
Répartition des consommations en bovin viande


100 EQF/1 000 litres de lait 3,6 MJ/l de lait

85 EQF/100 kg viande vive 30 MJ/kg VV

(20 MJ/kg porc vif)

Source: Réseaux d'Elevage, 2006 - Beguin et al., 2008

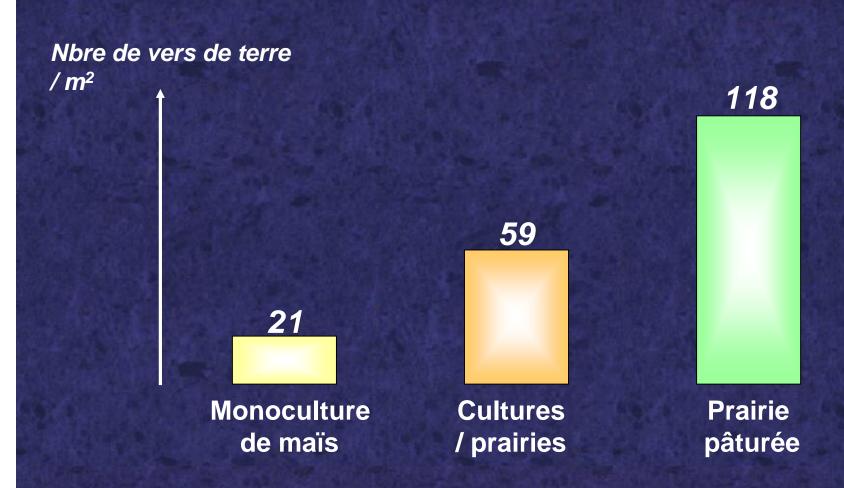

Systèmes laitiers : des marges de progrès importantes

Source: Réseaux d'Elevage, 2006 - Beguin et al., 2008

- De 35 à 60 % d'écarts entre les plus consommateurs et les économes
- De 20 à 35 % d'écarts entre la moyenne et les économes

Emissions de gaz à effet de serre : intégrer le stockage de carbone sous prairies

Emissions de gaz à effet de serre : prendre en compte toutes les facettes du problème


- Intégrer le stockage du carbone en dépit des incertitudes sur les niveaux de stockage annuel (variable selon l'âge, le mode d'exploitation de la prairie et les conditions climatiques)
- Maintenir l'élevage herbivore et les prairies permet de conserver des stocks importants de carbone
- Faire valoir aussi les effets positifs du carbone organique sur la fertilité des sols et la productivité des agro-systèmes
- Ne pas se focaliser sur les seuls gaz à effet de serre

Les systèmes d'élevage herbivores favorables à la biodiversité ordinaire et producteurs de paysages

- Les prairies permanentes et la diversité des modes d'exploitation sont favorables à la biodiversité (Dumont et al., 2007)
- Les prairies entraînent une forte diversité de la macrofaune du sol (Lamandé et al., 2004)
- Les infrastructures écologiques (haies, espaces boisés,...) favorisent la biodiversité végétale, l'entomofaune, les oiseaux et les petits mammifères
- Les prairies et les infrastructures écologiques participent à la connectivité des espaces naturels

Surface équivalente biodiversité : 20 à 30 ares/ 1 000 l de lait, 25 à 50 ares/100 kg viande vive

Les prairies sont favorables à la diversité de la macrofaune du sol

Lamandé et al., 2004 - Programme GESSOL, 2008

Quelques repères d'indicateurs environnementaux exprimés à l'hectare

6 2 7 7		Production laitière	Production viande bovine	Production porcine	Production de blé
	Unité	Van der Werf et al., 2007	Institut de l'Elevage, 2009	Espagnol et al., 2008	Williams, 2006
Eutrophisation	kg éq. PO₄	39	18	38	22
Effet de serre	kg éq. CO ₂	5 067	4 120	4 266	3 280
Conso énergie	MJ	20 227	14 400	28 396	18 100
	EQF	565	403	793	492
Biodiversité*	ares SB/ha	> 60	> 75	< 5	< 20

^{*} Nos estimations

Des périmètres à préciser et des valeurs à consolider

Quelques repères d'indicateurs environnementaux exprimés au kg de viande vive

		Viande bovine	Viande porcine	Viande de volaille
	Unité	Cederberg, 2004	Espagnol, 2008	Williams, 2006
Eutrophisation	kg éq. PO₄	0,048	0,02	0,065
Effet de serre	kg éq. CO ₂	10,9	2,3	6
Conso. énergie	MJ	28	15	16
	EQF	0,8	0,41	0,45
Biodiversité*	m²	20-40	< 1	< 1

^{*} Nos estimations

Positionnement des exploitations d'élevage par rapport à la certification "Haute Valeur Environnementale" issue du Grenelle de l'Environnement

Certification environnementale : un objectif de 50 % d'exploitations engagés en 2012

Niveau 3

HVE

Démarche d'appui

Incitation agriculteur

miveau ,

Indicateurs de résultats Démarche d'appui à finaliser

Crédit d'impôt Accès aux aides

Niveau 2

Management environnemental Obligation de moyens

biodiversité, phytos, fertilisation, eau)

Reconnaissance des démarches existantes (AR, CBPE, ...)

Pas TGAP ?
Accès aux aides

Niveau 1

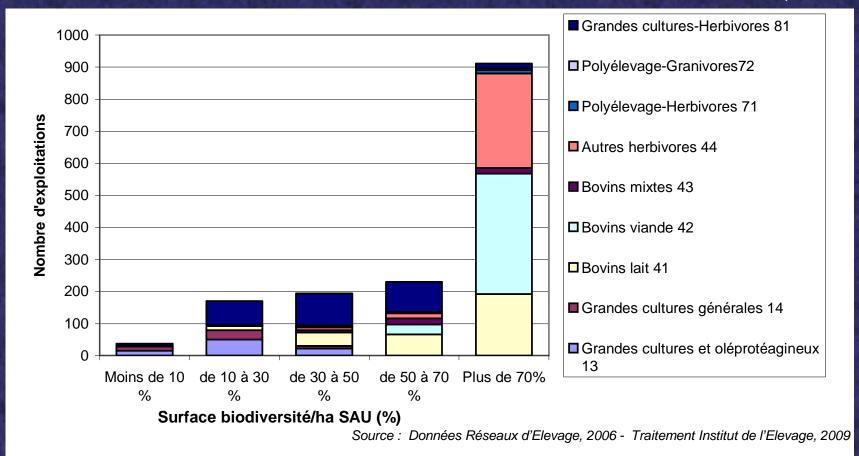
(biodiversité, phytos, fertilisation, eau, énergie)

Niveau de base (conditionnalité)

Autodiagnostic

Contrôles Conditionnalité plus souples

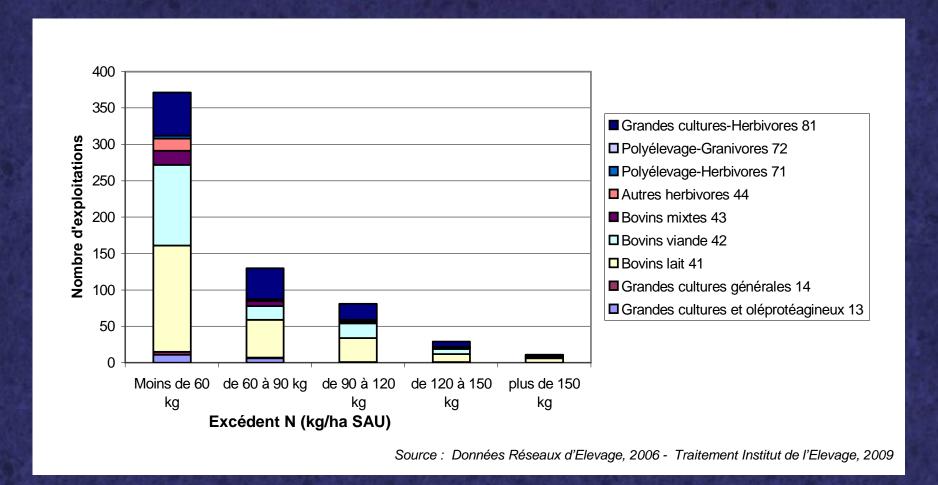
A croiser avec l'information environnementale des produits


Journées AFPF 2009

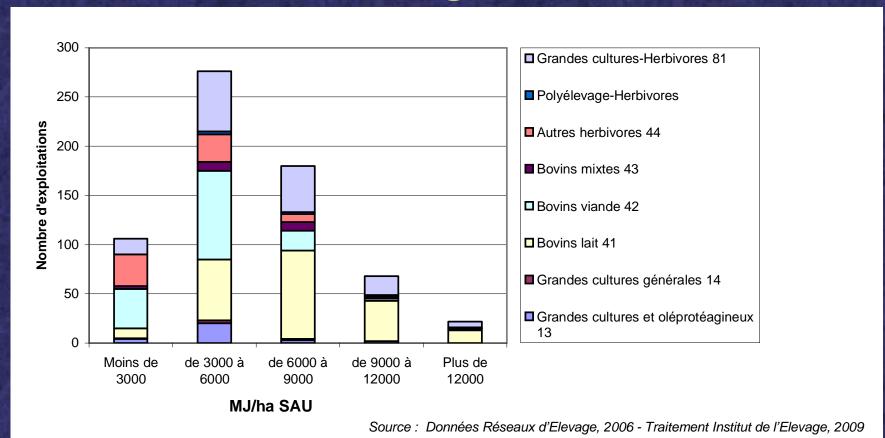
Des indicateurs en discussion pour la certification Haute Valeur Environnementale

Domaine	Indicateurs		
Biodiversité	% infrastructures agro écologiques/SAU		
	% culture annuelle principale/surface assolable		
Stratégie phytosanitaire	Indice de fréquence de traitement (IFT)		
Castian de la fartilization	Entrées d'azote du bilan entrées/sorties à l'exploitation (Kg/haSAU)		
Gestion de la fertilisation	Excédent d'azote du bilan entrées/sorties à l'exploitation (kg/ha SAU)		
Gestion quantitative de l'eau	Efficience de l'eau issue de l'irrigation		
Energie	Consommations d'énergie directe (MJ par ha de SAU)		
Ensemble	% charges (opérationnelles + eau, gaz, éléctricité, transport, travaux par tiers) / produits de l'exercice		

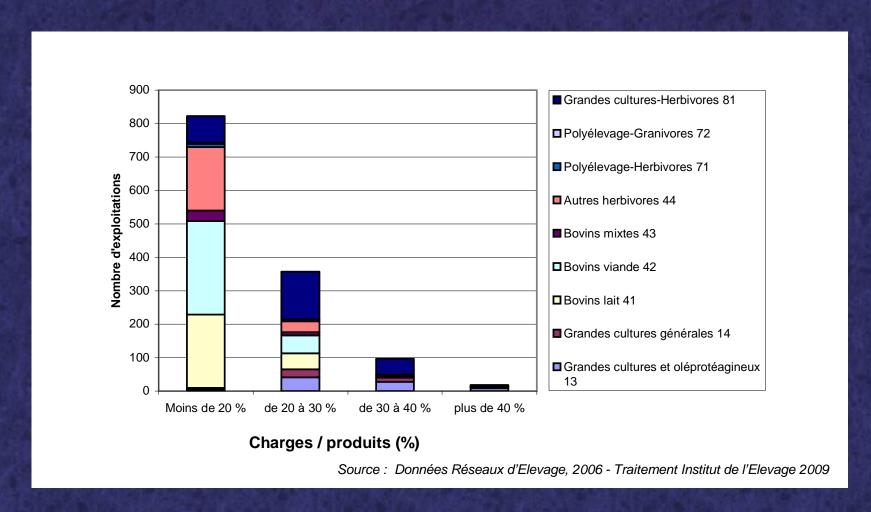
Une contribution positive des exploitations herbivores à la biodiversité


1 ha prairie = 1 ha eq biodiversité 1 ha couvert herbacé = 1 ha eq biodiversité

70 % des exploitations présentent plus de 50 % de la SAU en surfaces équivalentes en biodiversité


Journées AFPF 2009

Des excédents d'azote modérés


60 % des exploitations herbivores affichent un bilan inférieur à 60 kg N/ha SAU

Des consommations d'énergie directe liées à la réfrigération du lait et aux fourrages stockés

85 % des exploitations consomment moins de 9 000 MJ/ha (250 EQF/ha)

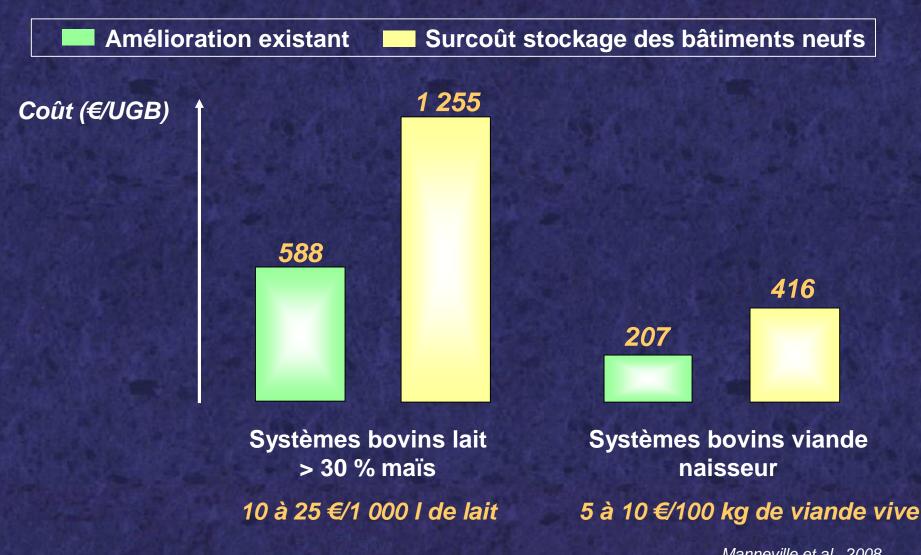
Un poids des intrants relativement faible

Plus de 90 % des exploitations ont un poids des intrants/PB inférieur à 30 %

Vers la Haute Performance Environnementale?

- Les exploitations herbivores présentent plutôt de bonnes performances environnementales
- Une bonne part d'entre elles pourrait prétendre à la qualification Haute Valeur Environnementale
- Des discussions à poursuivre sur :
 - La pertinence des indicateurs proposés
 - Les seuils ou valeurs cibles à retenir
 - Le lissage des valeurs sur 3 années
 - L'agrégation des indicateurs

Compatibilité entre performances environnementales et économiques


Limiter les intrants conduit à réduire les charges et peut améliorer l'efficience économique

Consommations d'énergie et efficience économique des exploitations laitières en zone de plaine (système herbe-maïs)

	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1				
	Quart inferieur	Moyenne	Quart supérieur		
	sur la consommation d'énergie /1000 litres				
Nbre de fermes	12	50	12		
% mais /SFP	20	20	18		
Chargement (UGB/ha)	1,35	1,34	1,26		
Production laitière (I/ VL)	7017	6831	6609		
Concentrés (g/litre)	170	198	220		
Consommations d'énergie					
- EQF/ha SAU	376	434	471		
- EQF/ 1 000I	72	89	11		
EBE / Produit Brut %	55	50	48		
		A SECURIOR PROPERTY OF	A REAL PROPERTY AND ADDRESS OF THE PARTY OF		

Source : Données Réseaux élevage 2006 - Beguin et al., 2008

La mise en conformité environnementale (PMPOA) conduit à réaliser des investissements importants

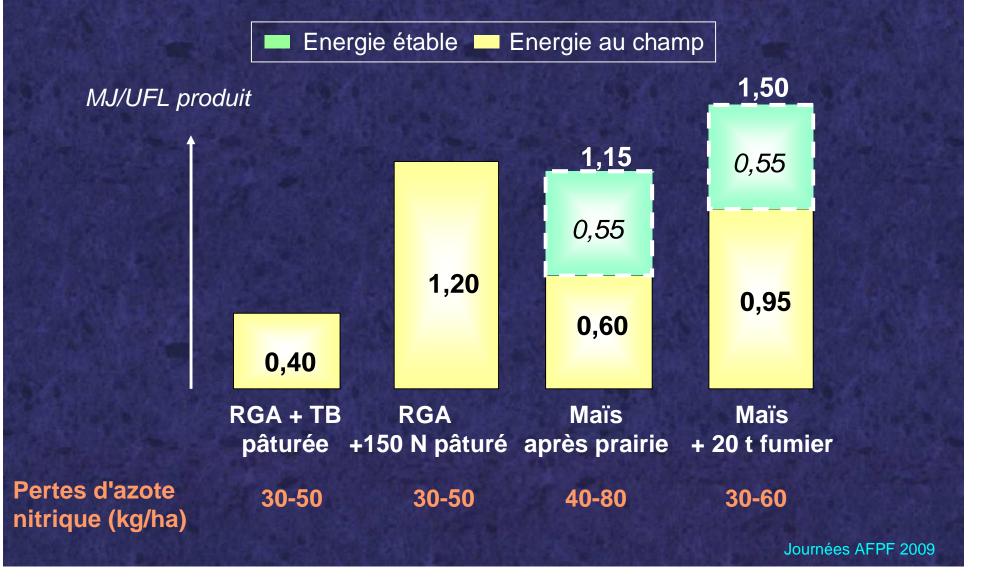
Manneville et al., 2008

Journées AFPF 2009

Un élevage à hautes performances environnementales contribue-t-il à une bonne valorisation du lait et de la viande ?

- Une activité agricole à bonnes performances environnementales contribue sans doute à l'image des produits, à leur acceptabilité
- Sauf agrobiologie et productions sous AOC,...
 il n'y a pas encore de plus values pour les produits issus
 d'une agriculture à bonne valeur environnementale
- Des concurrences possibles avec des produits issus d'autres pays dont les normes environnementales sont moins strictes
- Nécessaire d'avoir des politiques publiques cohérentes et pérennes permettant la mise en œuvre de mesures environnementales

Illustrations de solutions techniques pour des élevages à haute valeur économique et environnementale autour des fourrages


Des prairies permanentes productives pour stocker du carbone et contribuer à la biodiversité

- Maintenir les prairies permanentes pour préserver les stocks importants de carbone dans les sols
- Sursemer du trèfle blanc pour améliorer leur productivité et économiser de l'azote minéral
- Préserver la diversité d'utilisation des surfaces pour obtenir une bonne biodiversité floristique, de la faune du sol et de l'entomofaune (Farruggia et al., 2006; Dumont et al., 2007)

Les légumineuses : un des piliers de l'élevage à haute valeur environnementale

Du maïs économe et propre avec des engrais de ferme et des cultures intermédiaires

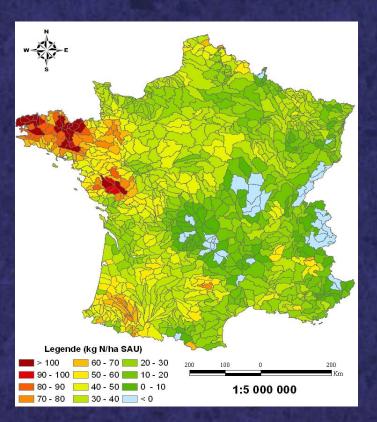
Une fertilisation essentiellement basée sur les engrais de ferme

- Recyclage des engrais de ferme et légumineuses prairiales doit permettre de réduire fortement les achats d'engrais minéraux : vers zéro N, P, (K) dans les fermes d'élevage
- Un impact environnemental évident : 1 kg d'azote minéral
 = 12 kg d'Equivalent CO₂
- Le bilan des minéraux pour valider, vérifier, consolider les bonnes pratiques mises en œuvre

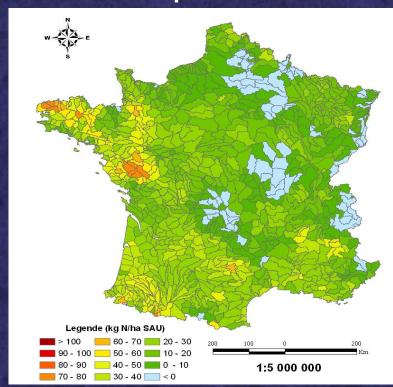
Du pâturage pour maîtriser les coûts et limiter les consommations d'énergie et les émissions de gaz à effet de serre

- Le pâturage : un bon moyen pour maîtriser les coûts de production
- Des pertes d'azote nitrique modérées pour des fertilisations inférieures à 200 kg N/ha et des taux de trèfle blanc < 50 % en été
- Des coûts énergétiques plutôt faibles (surtout avec légumineuses) et des émissions totales de gaz à effet de serre inférieures de 25 à 35 % (au litre de lait produit) par rapport aux fourrages stockés

Des sources de protéines européennes pour réduire les émissions de CO₂ liées aux concentrés


- Peu de marges de manœuvre alimentaires pour réduire les émissions de méthane entérique
- Apport d'acides gras polyinsaturés (graines de lin par exemple)
 pourrait avoir un effet mais à confirmer sur le temps long
- Ajuster les apports de concentrés en valorisant correctement les fourrages
- Remplacer le tourteau de soja sud américain par le tourteau de colza métropolitain (étude Unip : - 15 % sur l'empreinte carbone du lait)

Conclusions


- La majorité des systèmes d'élevage herbivores présentent de bonnes performances environnementales, permises par la prairie permanente et temporaire
- Il existe des solutions techniques pour améliorer les bilans économiques et écologiques, mais il faut les raisonner globalement au niveau de l'exploitation
- L'élevage à hautes performances environnementales nécessite des recherches intégrées mais aussi une agrégation pondérée des indicateurs
- Il faut aussi considérer les aspects sociaux, autre pilier de la durabilité

Des projections encourageantes des bilans de l'azote pour 2015

Bilan Azote type CORPEN Situation RGA 2000

Bilan Azote type CORPEN
Situation 2015 avec fertilisation azotée optimisée

Source : Institut de l'Elevage, CNIEL, 2006

Des premiers effets sur la teneur en nitrates de l'eau mais la situation reste fragile

Variations 2005/1993
pour les eaux superficielles
des zones vulnérables

LEGENDE

- Diminution forte x<=-5 mg/l (54)
- Diminution faible -1>x>-5 mg/l
 (22)
- Stabilité -1<=x<=1 mg/l (14)
- Augmentation faible 1<x<5 mg/l (36)
- Augmentation forte 5<=x<=10 mg/l (40)
- Augmentation très forte x>10 mg/l (32)
- Zones vulnérables (2003)

Source: MEDAD et Oieau, 2007