

Journées de Printemps 2021 : Fourrages et prairies 2.0

La télédétection pour la gestion des prairies et des fourrages

Hervé NICOLAS

Institut Agro - Agrocampus Ouest UMR SAS Agrocampus Ouest, INRAE

herve.nicolas@agrocampus-ouest.fr

Sommaire

Introduction

Contexte général de la gestion des prairies

Définition de la télédétection

Domaines optique, thermique et radar Capteurs et vecteurs satellites et aériens

Méthodes d'analyse

Dynamiques temporelles Complexité des prairies Estimation des variables biophysiques d'intérêt Les différentes méthodes d'estimation

Exemples d'usage de la télédétection

Perspectives

Modèles économiques Nouveaux capteurs Nouvelles méthodologies Services numériques

Conclusion

Télédétection et gestion des prairies : introduction

Télédétection et prairies : contexte général

Les prairies :

- Rôle économique (production de biomasse, de protéines pour les animaux au pâturage et pour les stocks de fourrage)
- Rôle environnemental (qualité de l'eau, de l'air et des sols : régulation des flux d'azote, des polluants et du carbone)
- Évolution à moyen et long terme
 Diminution de la surface des prairies,
 Evolution du climat (fréquence des sécheresses estivales)
- → Amélioration des performances économiques et environnementales

Télédétection et gestion des prairies : introduction

Télédétection et prairies : gestion

Les prairies : besoins des éleveurs et des gestionnaires territoriaux

Identification

Types / rôles / place des prairies

Caractérisation

Evaluer le niveau de production de biomasse Variabilité interannuelle Répartition intra-annuelle

• Informations précises et nombreuses

A différentes échelles spatiales (Parcelle \rightarrow exploitation \rightarrow territoire) et temporelles (Hebdomadaire \rightarrow mensuelle \rightarrow interannuelle)

Télédétection et gestion des prairies : introduction

Télédétection et prairies : gestion

Les prairies : contraintes

- Grandes surfaces concernées
- Difficulté d'accès aux suivis de terrain et aux mesures directes
- Forte temporalité souvent requise

Intérêt de la télédétection:

- Informations spatiales et temporelles sur les caractéristiques physiques et biologiques des prairies
- Exhaustivité / Homogénéité / Répétitivité / Sans effet « opérateur »
- Observation / Analyse / Interprétation / Gestion

Sommaire

Introduction

Contexte général de la gestion des prairies

Définition de la télédétection

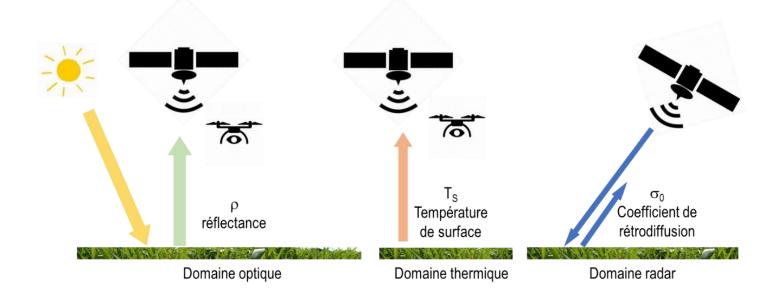
Domaines optique, thermique et radar Capteurs et vecteurs satellites et aériens

Méthodes d'analyse

Dynamiques temporelles Complexité des prairies Estimation des variables biophysiques d'intérêt Les différentes méthodes d'estimation

Exemples d'usage de la télédétection

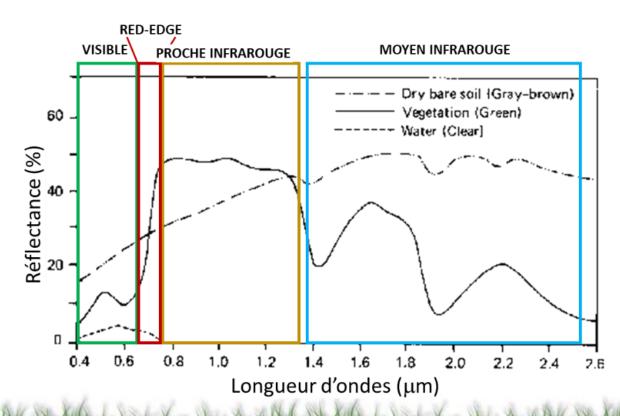
Perspectives


Modèles économiques Nouveaux capteurs Nouvelles méthodologies Services numériques

Conclusion

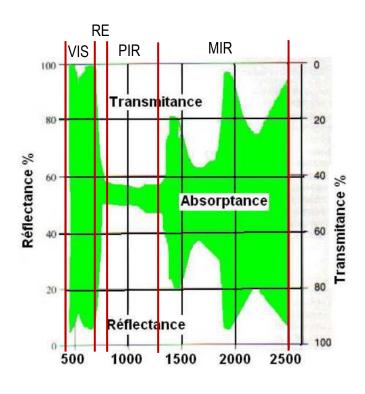
Télédétection: principes généraux

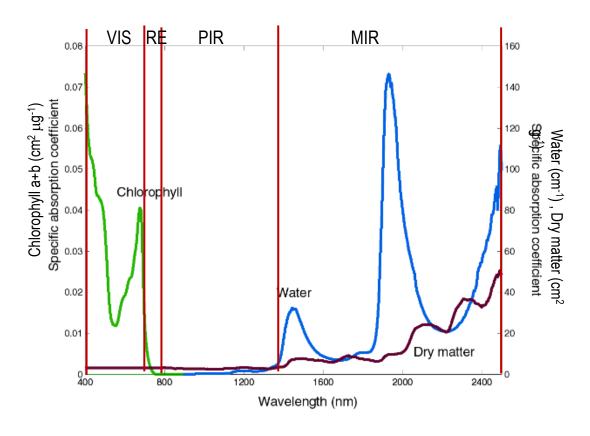
- Mesure d'une onde électromagnétique issue de la surface par réflexion ou par émission
- Trois domaines spectraux: Optique / Thermique / Radar
- Vecteurs satellitaires et aériens (drone, avion)



Télédétection : Le domaine optique

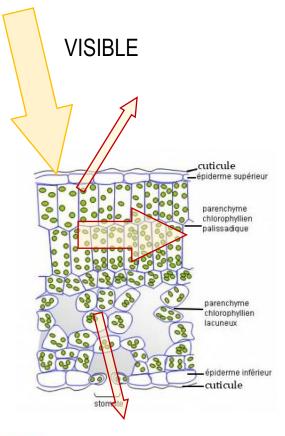
- Mesure de la réflectance
- Découpé en 4 gammes spectrales :

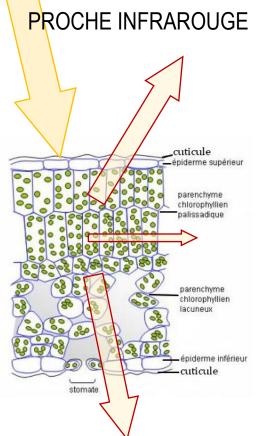

Visible / Red-edge / Proche infrarouge / Moyen infrarouge

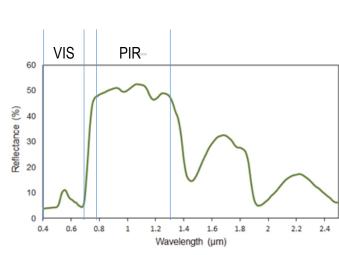


Télédétection : Le domaine optique

• La végétation

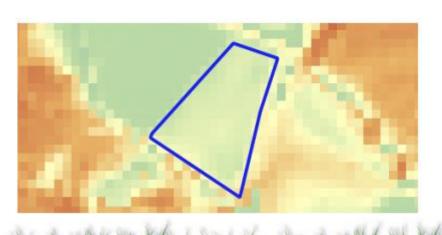


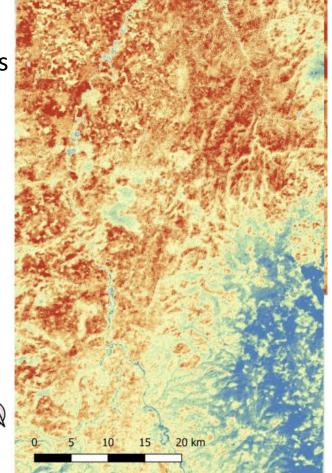




Télédétection : Le domaine optique

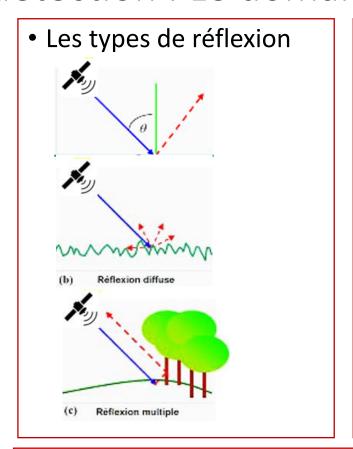
La végétation

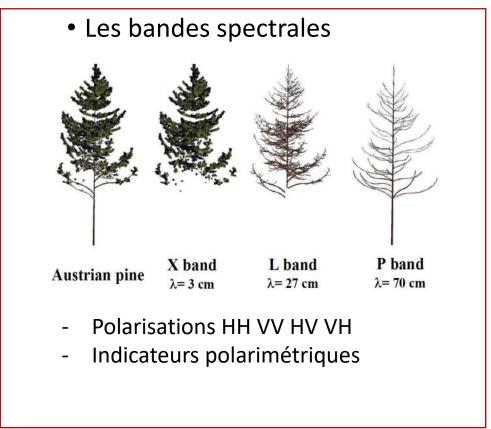

Télédétection : Le domaine thermique


- Gamme spectrale : $8 \mu m 14 \mu m$
- La température de surface

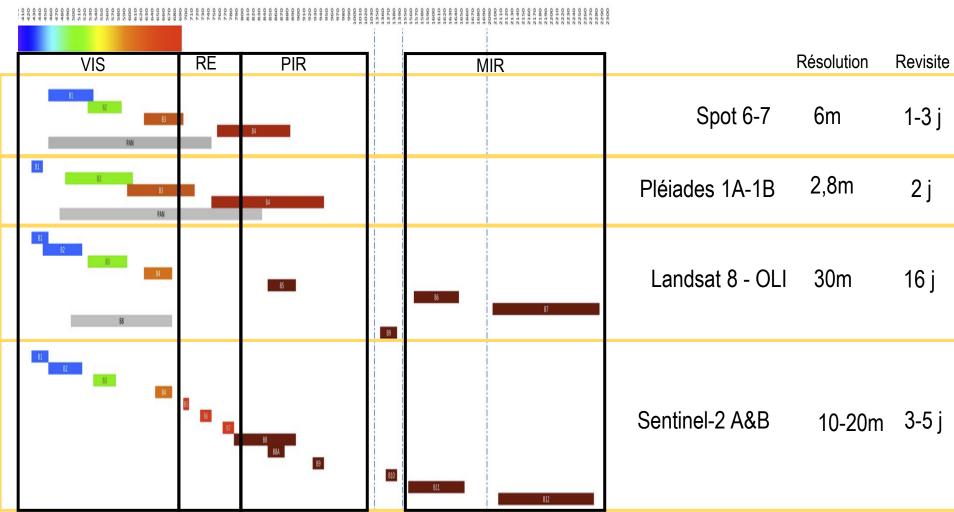
Terme d'équilibre du bilan d'énergie Complément de données météo spatialisées (ex: AROME)

Permet de quantifier :


- le stress hydrique
- l'évapotranspiration



Télédétection : Le domaine radar



- Insensible à l'ennuagement
- Sensible à la rugosité, l'humidité, la structure de la végétation

Télédétection : les capteurs satellitaires

• Dans le domaine optique

Télédétection : les capteurs satellitaires

• Dans le domaine thermique

	Résolution	Revisite
Landsat 8 – TIRS	90m	16 j
Sentinel-3	1000m	4 j
MODIS	1000m	1 j
VIRSS	750m	1 j

Dans le domaine radar

Sentinel-1 A&B	Bande C	23m (*)	3 j (*)
Radarsat constellation	Bande C	1,3m (*)	1 j (*)
ALOS-2	Bande L	1-3m (*)	1 j (*)
SOACOM-1a,b	Bande L	10m (*)	8 j (*)
Cosmo-SkyMed SG	Bande X	1-15m (*)	1 j (*)

(*) variable selon le mode d'acquisition

Télédétection : les capteurs aériens

	Résolution	Couverture	Multispectral VIS-PIR	Hyperspectral VIS-PIR-MIR	Thermique	Radar	Lidar
	1cm - 1m	15 ha					
	1cm - 1m	120 ha					
F-JVIG	50cm - 1m	~1000 km²					

Sommaire

Introduction

Contexte général de la gestion des prairies

Définition de la télédétection

Domaines optique, thermique et radar Capteurs et vecteurs satellites et aériens

Méthodes d'analyse

Dynamiques temporelles Complexité des prairies Estimation des variables biophysiques d'intérêt Les différentes méthodes d'estimation

Exemples d'usage de la télédétection

Perspectives

Modèles économiques Nouveaux capteurs Nouvelles méthodologies Services numériques

Conclusion

Télédétection : Complexité des prairies

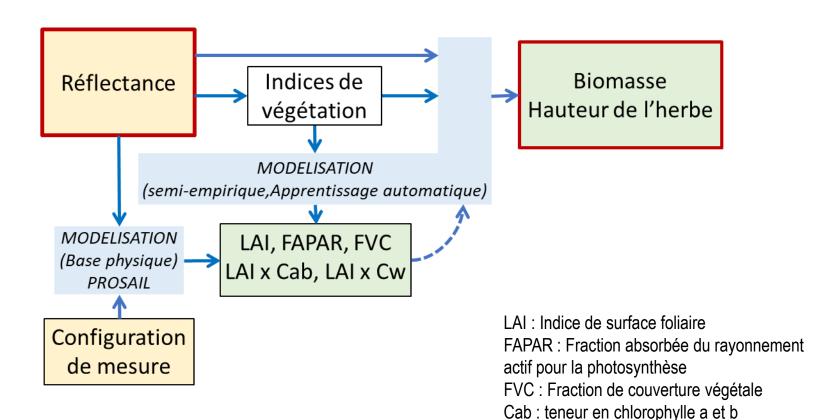
Dynamiques temporelles variables

• Pratiques culturales diversifiées: fauche / pâturage

Compositions floristiques variables

- Choix des espèces végétales semées
- Contexte pédoclimatique

Type de prairies


- Prairies permanentes: ressemées naturellement, non retournées pendant au moins 5 années
- Prairies temporaires : semées, entrent dans le rotations culturales, durée de 5 ans maximum

• Structure des couverts végétaux

- Prairie fauchée: plus homogène, hauteur de végétation plus élevée avant la fauche
- Prairies pâturées: plus hétérogènes, moins développées en hauteur, plus dense au niveau du sol

Estimation de variables biophysiques d'intérêt pour la gestion des prairies
 Données d'entrée = Télédétection du domaine optique

Cw: teneur en eau

Nécessité de disposer d'observations au sol

- en nombre suffisant et de grande précision
- représentatives de
 - la variabilité spatiale et temporelle
 - de la complexité des couverts végétaux

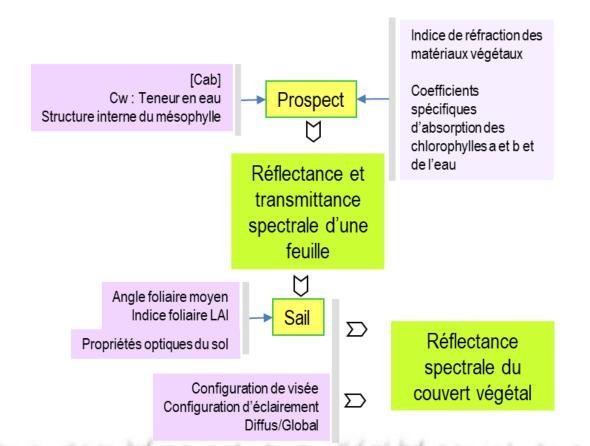
Méthodes semi-empiriques

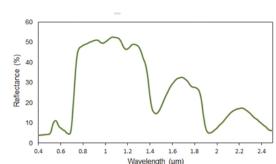
 Relations statistiques directes entre les données de télédétection (réflectance, indices de végétation) et les observations au sol

Méthodes d'apprentissage automatique

 Approches mathématiques et statistiques pour « apprendre » à partir des observations au sol (Cf. Modèle HERDECT)

ex: Support Vector Machine (SVM), Random Forest (RF), réseaux de neurones (RN)


Méthodes à base physique

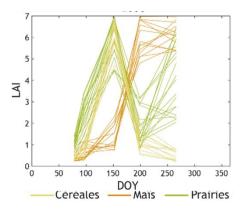


• Méthodes à base physique : exemple du modèle PROSPECT-SAIL

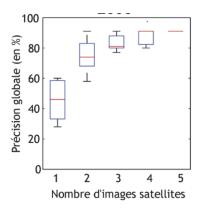
Sens direct : caractéristiques biophysiques
Réflectance

Sens inverse : Réflectance → Variables biophysiques

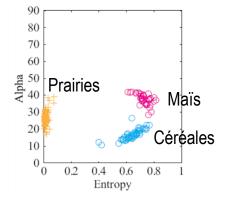
- En fonction de l'objectif d'étude
 - Relation entre résolution spatiale et temporelle


MRS: moyennes résolution spatiale (hectométrique)

HRS: haute résolution spatiale (décamétrique


THRS: très haute résolution spatiale (décamétrique et mé

Année			MRS, HRS
Mois	HRS, THRS	HRS	MRS, HRS
Bihebdo	HRS, THRS	HRS	MRS, HRS
hebdo	HRS, THRS		
jour			
	Parcelle	Paysage	Région


• Identification des prairies : précision accrue avec ...

Séries temporelles de variables biophysiques

Nombre d'images disponibles

Compléments de la télédétection du domaine radar

(Entropie : représentation du désordre aléatoire)

(Dusseux et al. 2019)

Sommaire

Introduction

Contexte général de la gestion des prairies

Définition de la télédétection

Domaines optique, thermique et radar Capteurs et vecteurs satellites et aériens

Méthodes d'analyse

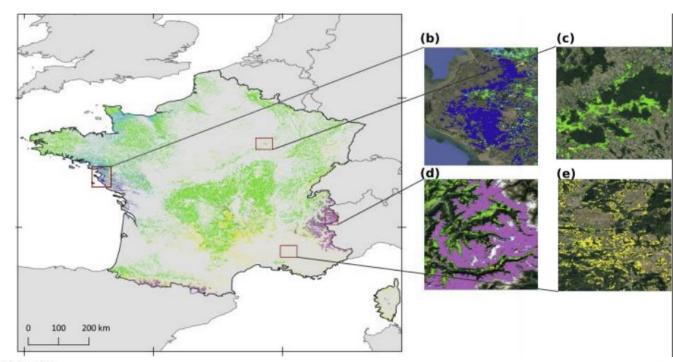
Dynamiques temporelles Complexité des prairies Estimation des variables biophysiques d'intérêt Les différentes méthodes d'estimation

Exemples d'usage de la télédétection

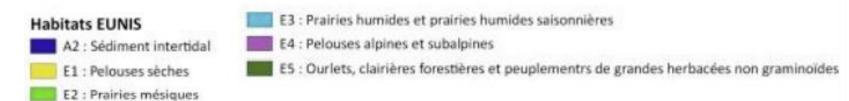
Perspectives

Modèles économiques Nouveaux capteurs Nouvelles méthodologies Services numériques

Conclusion


Télédétection et gestion des prairies : Exemples d'usages de la télédétection

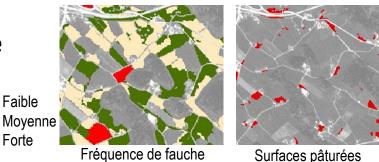
• Exemple d'analyse à large échelle : écologie Inventaire des habitats prairiaux


(Panhelleux, 2020, mémoire de fin d'études, Master TELENVI)

Combinaison de :

- Télédétection à moyenne résolution spatiale
- Variables bioclimatiques
- Variables topographiques
- Variables pédologiques

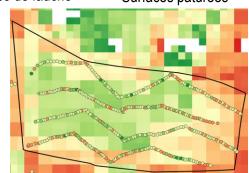
Habitats EUNIS niveau 2



Télédétection et gestion des prairies : Exemples d'usages de la télédétection

Faible

Forte


 Gestion des prairies : pâturage et fauche (Méthode d'apprentissage automatique) (Gomez-Gimenez et al. 2017)

Suivi de la hauteur de l'herbe et de la biomasse

(Méthode d'apprentissage automatique)

Ex: modèle HERDECT (Cf. Dusseux et al. 2021)

Changements climatiques

Développement d'un indice de production fourragère (IPF) Evaluation des pertes subies dans une zone géographique (Domaine assurantiel) Images de télédétection à moyenne et haute résolution spatiale FVC + Paramètres climatiques + Phénologie

- Suivi de sites expérimentaux par drone
 - Estimation de la hauteur de l'herbe
 - Estimation de la biomasse

Sommaire

Introduction

Contexte général de la gestion des prairies

Définition de la télédétection

Domaines optique, thermique et radar Capteurs et vecteurs satellites et aériens

Méthodes d'analyse

Dynamiques temporelles Complexité des prairies Estimation des variables biophysiques d'intérêt Les différentes méthodes d'estimation

Exemples d'usage de la télédétection

Perspectives

Modèles économiques Nouveaux capteurs Nouvelles méthodologies Services numériques

Conclusion

Télédétection : Perspectives

Modèles économiques

- Déplacement de la production d'images vers les services numériques Le programme Copernicus (Sentinel-1,2,3 = images nombreuses, gratuites, HRS, facile d'accès) a permis un large développement des applications
- Accentuation dans les années à venir

Nouveaux capteurs

- -Constellation Pléiades Néo (4 satellites) (2021) (Revisite 1 jour, résolution 30cm, Visible, Red-edge, Proche infrarouge)
- EnMAP (Environmental Mapping ans Analysis Program) (2021) (Revisite 4 jours, résolution 30m, hyperspectral)
- TRISHNA (Thermal infraRed Imaging Satellite for High-resolution Natural resource Assessment)

 (CNES-ISRO) Satellite optique + infrarouge thermique

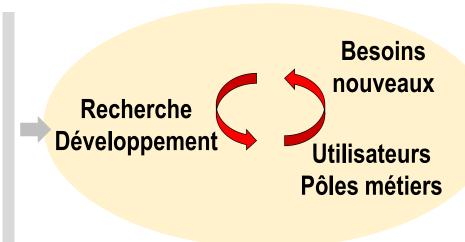
 (Revisite 3 jours, résolution 60-80m)
- Autres : Satellites privés, Nanosatellites (fonctionnement en synergie avec les satellites existants)

Télédétection : Perspectives

- Nouvelles méthodologies
 - Accès à des informations de télédétection multiples, nombreuses et complexes Synergie Optique multi/hyperspectral, Radar, Thermique Séries temporelles plus précises aux périodes critiques de la gestion des prairies
 - Sciences des données spatiales Données massives, précision accrue Accentuer la compréhension des interactions surface / télédétection
 - Nouvelles variables biophysiques d'intérêt : ex: Valeur fourragère, stress hydrique,
 - Complémentarité avec des données exogènes et d'autres modèles ex: Modèles de croissance (STICS prairie), météorologie, pédologie

Télédétection : Perspectives

Services numériques


Données de télédétection

Directives européennes, nationales
Plateformes de traitement de l'information
ESA, THEIA, GeoSud...

Autres données spatiales

Milieu physique, sols, météorologie,...

IDG: Infrastructure de données géographiques
(GeoBretagne, GeoPaL, GeoNormandie...)
INRAe, Institut Agro, Ch.Agriculture,
Instituts techniques, Entreprises

Services numériques innovants

Mise à disposition
Diffusion de données
et de services

Télédétection : Perspectives

- Services numériques
 - Réponse précise aux besoins des utilisateurs : co-construction
 - Synergie Recherche / développement / utilisateurs
 - Utilisateurs :

Agriculteurs

Acteurs économiques (Conseils, agroéquipements, approvisionnement,...)

- Informations facilement accessible, régulière, sous forme d'images et de données directement utilisables, avec une indication de la précision
- Interactivité
- Importance de la donnée observée in-situ
 - Obtention longue et difficile
 - Nécessaire pour le développement de nouveaux algorithmes en synergie avec les nouveaux capteurs/vecteurs
 - Valeur économique et scientifique majeure

Sommaire

Introduction

Contexte général de la gestion des prairies

Définition de la télédétection

Domaines optique, thermique et radar Capteurs et vecteurs satellites et aériens

Méthodes d'analyse

Dynamiques temporelles Complexité des prairies Estimation des variables biophysiques d'intérêt Les différentes méthodes d'estimation

Exemples d'usage de la télédétection

Perspectives

Modèles économiques Nouveaux capteurs Nouvelles méthodologies Services numériques

Conclusion

Télédétection et gestion des prairies : Conclusion

- Télédétection et transition numérique: enjeux majeurs
- Apports importants dans la gestion de systèmes complexes comme les prairies
- Evolution rapide des technologies de télédétection et de la science des données spatiales
- Synergie nécessaire entre plusieurs disciplines pour une information fiable, robuste et complète

(Agro/Agri, Ecologie, Météo, Télédétection, Science des données)

Merci de votre attention

