

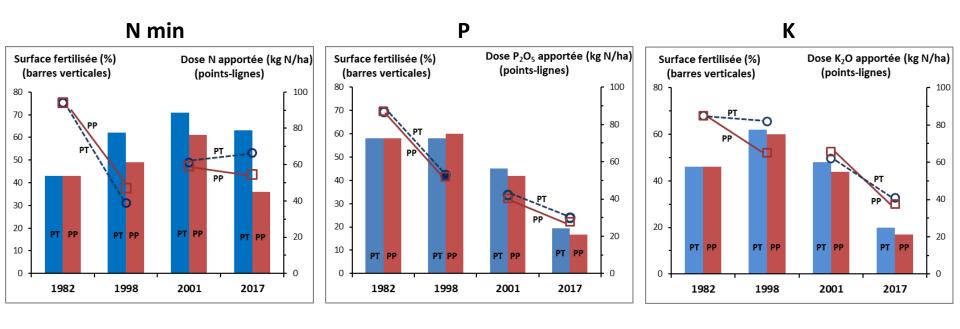
Journées de Printemps 2022

Valoriser, entretenir et assurer la Pérennité des Prairies

Les ressources P-K du sol peuvent-elles être des facteurs limitant la pérennité des prairies ?

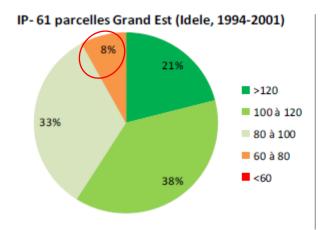
François Gastal¹, Claire Jouany², Marie-Laure Decau¹

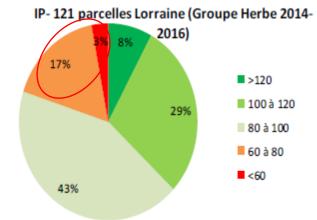
¹: UE FERLUS, Lusignan


²: UMR AGIR, Castanet-Tolosan

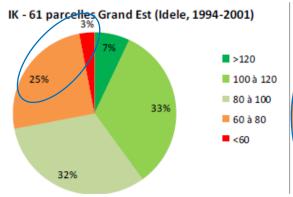
Evolution des pratiques de fertilisation N-P-K sur la prairie Française durant les 40 dernières années

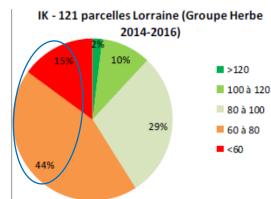
Evolution des surfaces (%) (barres verticales) et doses (lignes) de fertilisation à l'échelle nationale


Forte réduction des surfaces et des doses de P et K entre 2001 et 2017

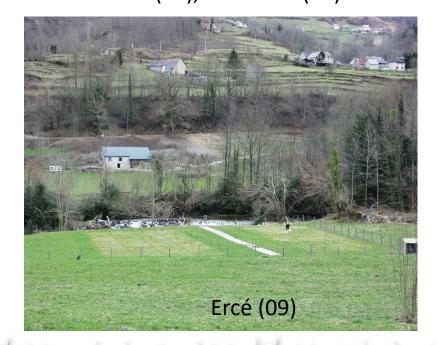


Sources: enquêtes prairies SCEES 1982, 1998 enquête pratiques culturales 2001, 2017


Nutrition P-K des prairies de l'Est: une situation qui s'est dégradée entre le milieu des années 1990 et le milieu des années 2010

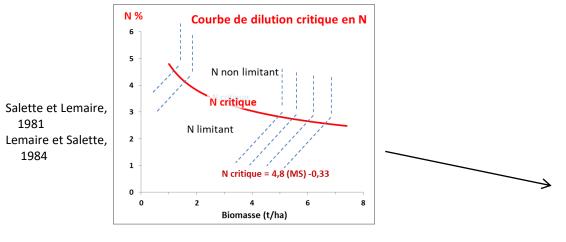

Indice de nutrition P

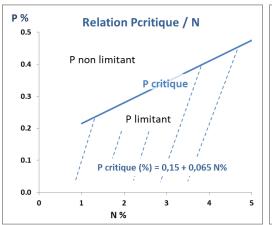
Indice de nutrition K

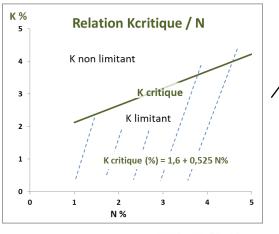

Source: fiche_technique_herbe_2018 CA et CRA du Grand Est

1- Rappel sur les outils disponibles: indices de nutrition (plante), analyses de sol

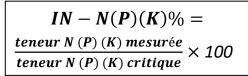
2- Evolution de la fertilité P-K et de la production de rotations prairies-culture : dispositif ACBB de Lusignan

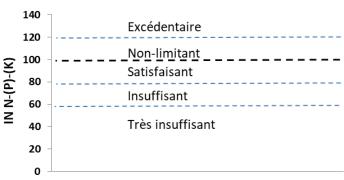



3- Réponses à P et à N en prairie permanente:
dispositifs de longue durée
Ercé (09), Gramond (12)



Les outils disponibles pour caractériser la disponibilité (N)-P-K des prairies


A- Les indices de nutrition (plante)



Indice de nutrition IN-N(P)(K)

Gastal et al 1992; Duru et Ducros, 1997; Farruggia et al 2000

Salette et Huché 1991; Duru et Théllier-Huché 1995; Théllier-Huché et al 1999; Farruggia et al 2000

Les outils disponibles pour caractériser la disponibilité (N)-P-K des prairies

B- Les analyses de sol, la méthode Comifer (PT, Comifer 2019)

Stratégie de fertilisation P et K basée sur plusieurs critères :

- Niveau d'exigence de la culture
- Positionnement de la teneur du sol / 2 seuils de l'analyse de terre: T impasse et T renforcée
- Passé récent de fertilisation sur les guatre dernières années
- Restitution ou non des résidus du précédent cultural

La combinaison de ces critères → une stratégie de fertilisation P et K

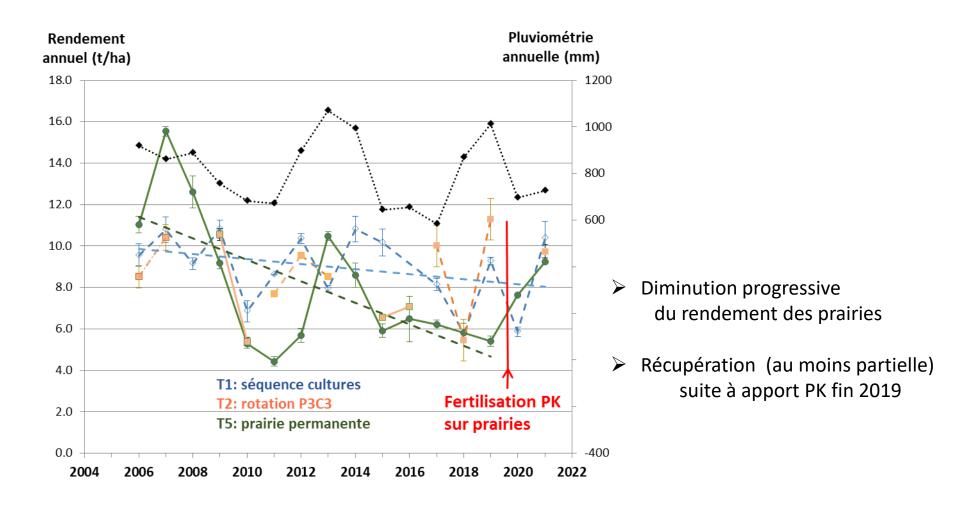
Coefficient multiplicatif rendement prévisionnel

* kg de P_2O_5 ou de K_2O/ha

Prairies en rotation : dispositif d'observation ACBB de Lusignan

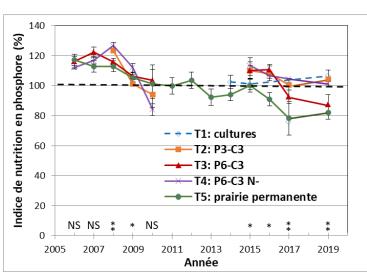
		Année	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
Sous-dispositif Fauche																				
T1	Rotation cultures (Maïs-Blé-Orge)		Maïs	Blé	Orge	M	В	0	M	В	0	M	В	0	M	В	0	M	В	0
T2	Prairie 3 ans/ cultures 3 ans, N+		M	В	0	Pra	irie 3 a	ans	M	В	0	Prairie 3 ans C1 C2 C3					C3	Prairie 3 ans		
Т3	T3 Prairie 6 ans/ cultures 3 ans, N+			Prairie 6 ans						В	0	Prairie 6 ans						M	В	0
T4	T4 Prairie 6 ans/ cultures 3 ans, N-			Prairie 6 ans						В	0	Prairie 6 ans						M	В	0
Т5	Prairie permanente, N+		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Sous-dispositif Fauche/Pâture																				
P1 (=T3)	Prairie 6	ans, fauche, N+	Prairie 6 ans						M	В	0	Prairie 6 ans					M	В	0	
P2 (=T5)	Prairie permanente, fauche, N+		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
P3	Prairie 6	Prairie 6 ans						M	В	0	Prairie 6 ans						M	В	0	
P4	Prairie permanente, pâturage, N+		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18

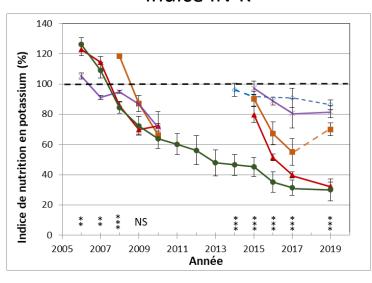
Début du dispositif en 2005:


P et K largement excédentaires (INP et INK 120-130%)

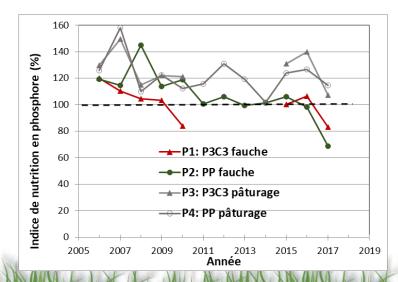
→ aucun apport P K entre 2005 et 2019

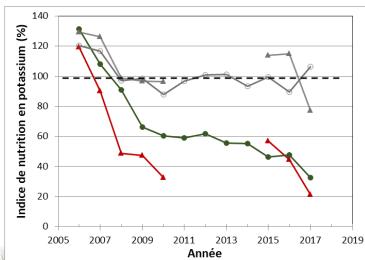
Evolution de la production annuelle - Dispositif Lusignan



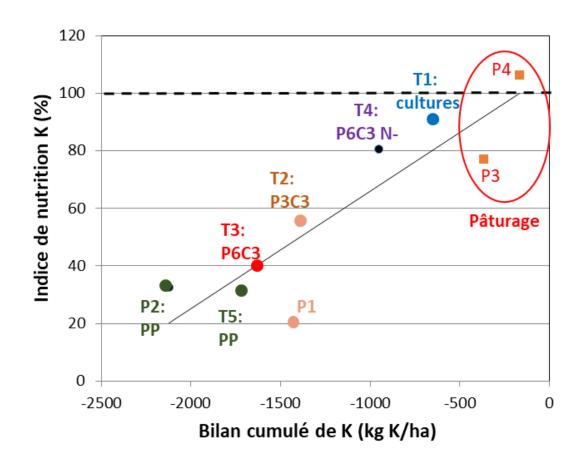

Evolution des indices de nutrition P et K - Dispositif Lusignan

Indice IN-P


Rotations prairies de fauche



Indice IN-K

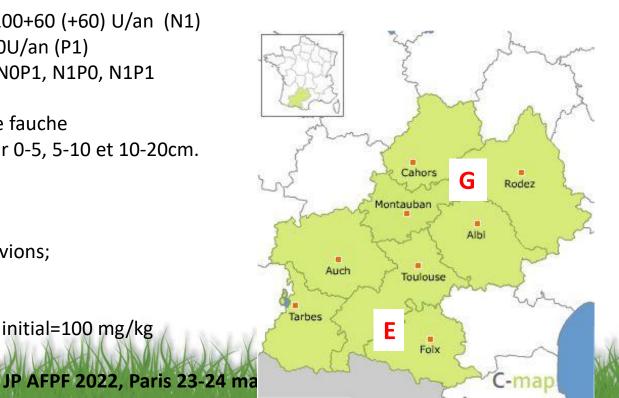

Fauche vs pâturage

Relation entre indice de nutrition K (2018) et bilan K cumulé (2005-18) Dispositif Lusignan

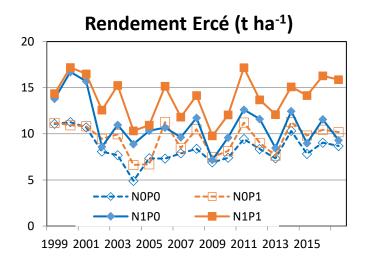
- Une évolution de l'indice IN-K largement déterminée par le bilan cumulé de K
- Effet majeur des modes de gestion de la prairie

(rotations, fauche vs pâturage, fertilisation N)

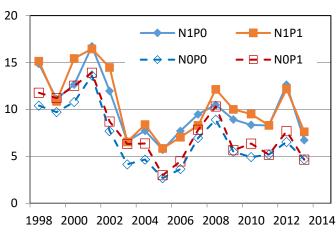
Réponses à P et à N: dispositifs de longue durée en prairie permanente

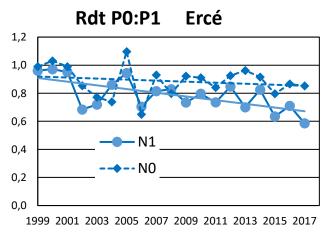

Objectifs

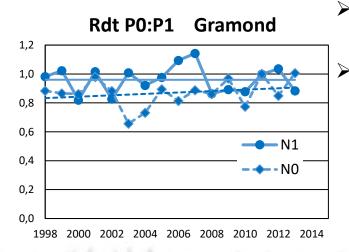
- Analyser la réponse à P et à N en prairie permanente:
 - Production de fourrage
 - Composition des communautés végétales
 - > Stocks de C et P du sol
- Tester et valider les approches de diagnostic sol et plante (indices de nutrition)
- Tester et valider la typologie fonctionnelle développée par Cruz et al (2010)
- Régime de fauche (3-4 par an)
- 2 niveaux de N: N=0 (N0) et N=100+60 (+60) U/an (N1)
- 2 niveaux de P: P=0 (P0) et P= 50U/an (P1) soit 4 traitements: N0P0, N0P1, N1P0, N1P1
- INP tous les ans sur la première fauche
- Analyse de sol tous les 5 ans sur 0-5, 5-10 et 10-20cm.
- 2 sites:
 - Ercé (09) 1999 à 2018 sol argilo-limoneux sur alluvions;


P_{Olsen} initial=15 mg/kg

- Gramond (12) 1998 à 2014 sol limono-sableux; P_{Olsen} initial=100 mg/kg

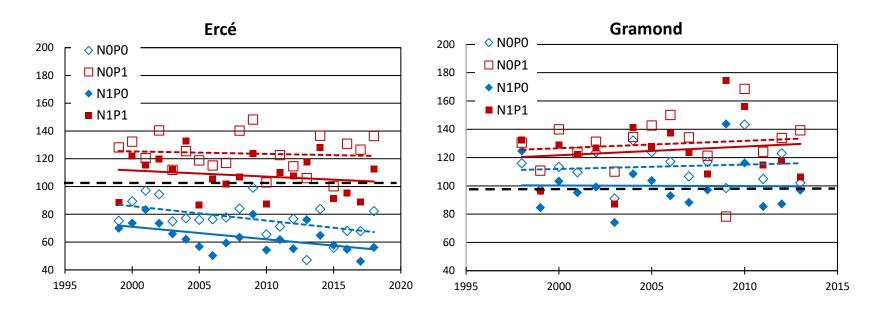



Evolution de la production annuelle – Dispositifs Ercé et Gramond



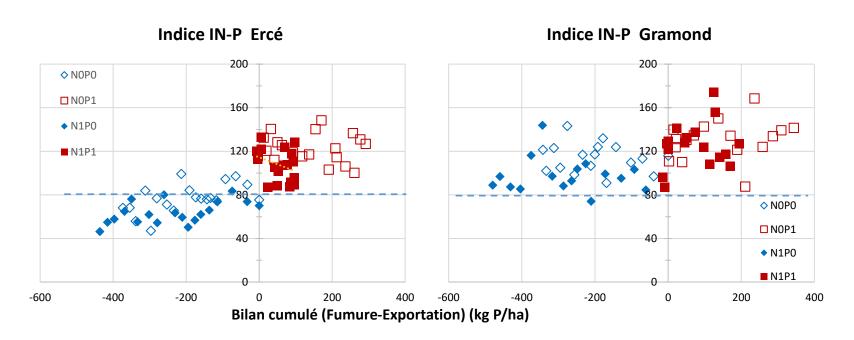
Rendement Gramond (t ha⁻¹)

Variabilité inter annuelle en lien avec le climat (pluviométrie et Σ température)



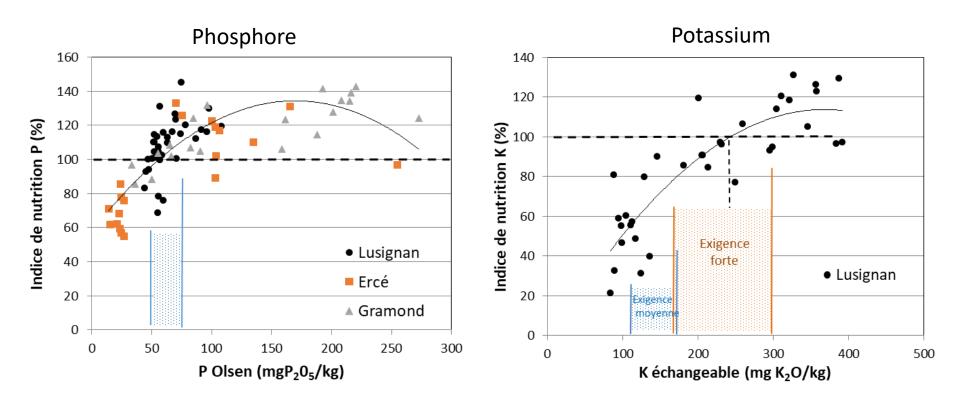
Ercé: Rdt P0:P1 < 1 diminue notamment enN1

Gramond:
Rdt P0:P1 stable;
le manque de P affecte
plus N0
Hypothèse: l'apport de P
favorise les légumineuses
en N0


Dynamique des indices de nutrition P – Dispositifs Ercé et Gramond

- Ercé:
 - INP de P1 reste stable et > 100; INP de P0 reste < 80 et diminue avec le temps
- Gramond:
 - INP reste stable dans le temps et supérieur à 100 quel que soit le régime P pas de limitation en P0
- > Pour un régime P donné, l'indice P est plus faible en N1 qu'en N0
 - → l'apport de N accélère l'épuisement des réserves P du sol

Relation entre indice de nutrition P et bilan cumulé de P Dispositifs Ercé et Gramond


La dynamique de l'indice IN-P est différente entre les deux sites:

- En situation d'appauvrissement (bilan P négatif):
 - Ercé: faible P disponible, INP proportionnel au bilan de P et de plus en plus négatif
 - Gramond: fort P disponible, INP stable et >80
- En situation d'enrichissement, les indices augmentent avec le bilan de P pour les 2 sites.
 - → La dynamique à long terme de l'indice IN-P dépend du niveau des ressources initial et du bilan P à la parcelle

Relations entre indices P-K sur végétation et teneurs P-K sol

ensemble des dispositifs Lusignan-Ercé-Gramond

- Des bonnes relations semblent exister entre les approches de diagnostic plante et sol
- Les données de nos dispositifs semblent valider des seuils de réponse 'sol' pour P et K, en considérant les prairies comme des cultures exigeantes en K

Conclusion

- Depuis une vingtaine d'années on observe une nette tendance de réduction de la fertilisation P-K sur prairies
- Dans ce contexte, les disponibilités en P ou/et K sont susceptibles d'affecter le maintien de la productivité et du % de légumineuses des prairies (temporaires et permanentes)
- On dispose d'outils opérationnels pour diagnostiquer les situations en P-K, soit les indices végétation soit les teneurs sol
- Les indices végétation sont plutôt adaptés à un diagnostic *a posteriori*, sur PT et PP, l'analyse sol permet plutôt un pronostic sur PT (zones de polyculture)
- L'état initial des réserves, la nature des sols mais aussi <u>le mode de gestion</u> (fertilisation N-P-K) et <u>le mode d'exploitation</u> (fauche/pâturage) affectent fortement la dynamique P-K et l'impact sur la productivité
- Limites actuelles des outils: les références actuelles, essentiellement établies sur graminées, sont-elles valables pour les légumineuses?

Merci de votre attention

